
Efficient FPGA-based ECDSA Verification Engine
for Permissioned Blockchains

Rashmi Agrawal
Boston University, Boston, USA

rashmi23@bu.edu

Ji Yang
AMD, San Jose, USA

ji.yang@amd.com

Haris Javaid
AMD, Singapore

haris.javaid@amd.com

Abstract—Permissioned blockchain platforms heavily depend
on cryptography to provide a layer of trust within the blockchain
network, thus verification of cryptographic signatures often
becomes the bottleneck. ECDSA is the most commonly used
cryptographic scheme in permissioned blockchains. In this work,
we propose an efficient implementation of ECDSA signature
verification on FPGA, in order to improve performance of
permissioned blockchains that aim to use FPGA-based hardware
accelerators. We propose several optimizations for modular
arithmetic (e.g., custom multipliers and fast modular reduction)
and point arithmetic (e.g., reduced number of point double and
addition operations, and optimal width NAF representation).
Based on these optimized modular and point arithmetic modules,
we propose an ECDSA verification engine that can be used by any
application for fast verification of signatures. We further optimize
our ECDSA verification engine for Hyperledger Fabric (one of
the most widely used blockchain platforms) by moving carefully
selected operations to a precomputation block, thus simplifying
the critical path of ECDSA signature verification. Our ECDSA
engine running at 250MHz on Xilinx Alveo U250 accelerator
card can perform a verification in 760µs with a throughput of
1, 315 verifications/sec, which is ∼2.5 times faster than state-of-
the-art FPGA-based implementations. Our Hyperledger Fabric-
specific ECDSA engine can perform a verification in 368µs, and
2, 717 verifications/sec. With 10 engines, Hyperledger Fabric can
achieve a throughput of 7, 520 transactions/sec.

Index Terms—ECDSA signature verification, FPGA, Hyper-
ledger Fabric, Blockchain

I. INTRODUCTION

Beyond the hype, blockchain technology is emerging as one
of the most disruptive technologies, with real-world use cases
in many domains from digital identity management to financial
services, supply chains, and product provenance. A blockchain
combines consensus mechanisms with cryptography to provide
a layer of trust for executing and recording transactions in
an immutable ledger within a network of mutually untrusting
nodes. In public blockchains, such as Bitcoin and Ethereum,
any node can participate in the network without a specific
identity and proof-of-work based consensus is used, which be-
comes the bottleneck (due to computation of massive amounts
of hashes). In permissioned blockchains, on the other hand,
only nodes with known identities are part of and interact with
the network, while the consensus is delegated to only a few
nodes. Consequently, cryptographic operations (to authenticate
nodes and validate transactions) become the bottleneck rather
than the consensus mechanism [1].

Hyperledger (HL) Fabric [2] is an open-source, enterprise-
grade implementation of a permissioned blockchain, thus is
one of the most widely used blockchain with many real-world

applications from finance and supply chain domains [3]. In
HL Fabric network, one of the nodes is a validator peer, which
validates a block and its transactions before committing that
block to the ledger. Many recent works [1], [4]–[6] have shown
that verification of cryptographic signatures (Fabric uses 256-
bit ECDSA scheme) inside a validator peer is the major
bottleneck and critically affects the peak throughput. Recently,
hardware acceleration was proposed for validation of blocks
in HL Fabric. The work in [7] proposed a CPU-FPGA based
system where a multi-core server with a network-attached
FPGA card (connected to the CPU via PCIe) is used to
accelerate validator peer. Although they demonstrated an order
of magnitude speedup compared to CPU-only implementation,
ECDSA signature verification still turned out to be the critical
path in FPGA accelerator (latency of a single verification is
much larger than other operations, thus critically affecting
throughput in signature verifications/sec or blockchain trans-
actions/sec). Therefore, in this paper, we focus on an efficient
FPGA-based implementation of ECDSA signature verification,
in order to improve performance of permissioned blockchains
that aim to use FPGA-based accelerators.

More specifically, we focus on accelerating ECDSA sig-
nature verification over NIST P -256 elliptic curve, which
requires performing 256-bit modular and point arithmetic op-
erations. This is challenging for FPGAs because 256-bit wide
multipliers, adders/subtractors, and dividers are not readily
available. A naive implementation will result in resource inten-
sive design, making it challenging to fit the entire accelerator
on an FPGA and meet the required timing constraints. Our
contributions are:
• FPGA-specific optimizations: We propose a custom 256-

bit multiplier for use in modular multiplication and a 258-
bit multiplier for Barrett reduction by efficiently leveraging
DSP blocks. We also propose an efficient algorithm to
perform fast modular reduction over P -256 without using
expensive 256-bit comparators.

• Algorithmic optimizations: We present optimizations for
simultaneous-point and fixed-point multiplication algo-
rithms (used in ECDSA verification) to reduce the overall
number of point double and addition operations (e.g., use
of projective Chudnovsky coordinates with optimal non-
adjacent form (NAF) width).

• HL Fabric-specific ECDSA verification: We present a fast
ECDSA verification engine by leveraging the fact that the
generator point G is fixed and the public key K can be
extracted in advance. This allows us to move a major chunk

of point arithmetic operations to a precompute block. Con-
sequently, the operations during actual ECDSA computation
reduce to just point addition operations, resulting in a much
faster signature verification.
We implemented ECDSA verification engines on Xilinx

Alveo U250 card [8] with 250MHz target frequency, achieving
368µs per verification and 2, 717 verifications/sec.

II. BACKGROUND AND PRELIMINARIES

A. Blockchain Machine
Figure 1(a) depicts a simplified overview of hardware accel-

erator proposed in [7] for HL Fabric. The blocks are received
in FPGA card through the integrated network interface. The
first module, ProtocolProcessor, processes the incoming pack-
ets and extracts relevant data, such as block id, transaction
ids, ECDSA signatures, public keys, etc. The second module,
BlockProcessor, uses this data to validate the block and its
transactions, and then commits valid transactions. The Fabric
software running on CPU accesses validation results from
hardware and commits the block to disk-based ledger.

Internally, the BlockProcessor uses a configurable number
of ECDSA verification engines distributed across multiple
stages to process signature verifications as fast as possible.
Each ECDSA engine accepts a verification request in the
form of {signature, public key, data hash}. Typically, the hash
is computed during ECDSA verification, but in Blockchain
Machine, it is precomputed by the ProtocolProcessor for better
performance. In this paper, we design an ECDSA verification
engine that can be used inside the Blockchain Machine, or
similar hardware accelerators for permissioned blockchains.
B. ECC

An elliptic curve E over a prime field Fp is defined by a
pair of tuple (x, y) satisfying the Weierstrass equation y2 =
x3+ax+b where a and b belong to a Galois field GF (p) with
p > 3 and Fp = GF (p). Point arithmetic allows us to compute
any point Pi = (xi, yi) on the elliptic curve. Addition of two
points P and Q, where P ≠ Q, is defined by R = P + Q.
However, when P = Q, point addition is performed as a point
double operation, resulting in 2P . Although point addition and
double operations can be performed in affine or projective
coordinates, we use projective Chudnovsky coordinates (using
equations 5 and 6 from [9]), where each point P is represented
as a quintuple (X,Y, Z, Z2, Z3) corresponding to the affine
point (x = X/Z2, y = Y/Z3). These coordinates offer
a speed benefit over affine coordinates when the cost for

 Server

FPGA Card

BlockProcessor

TxVerify

ProtocolProcessor

Block
Verify

.

.

.

ECDSA
engine

Packet
Processor

Data
Processor

Hash
Calc.

Data
Writer Register

Map

Network Interface

CPU

PCIe

ECDSA
engine

ECDSA
engine

TxVscc

.

.

.

ECDSA
engine

ECDSA
engine

Tx
Commit

Fig. 1: Blockchain Machine: FPGA-based hardware accelerator.

Algorithm 1: ECDSA Verification
Input : Digest z, sig (r, s), and key K = (xK, yK)
Output: Valid or invalid

1 if (r, s) not in range [1, n− 1] then return Invalid;
2 Compute w = s−1 mod n;
3 Compute k1 = z ∗ w mod n;
4 Compute k2 = r ∗ w mod n;
5 Compute (x2, y2) = k1G+ k2K;
6 if r = x2 mod n then return Valid;

Point Addition

Scalar-point
MultiplicationModulo Inverse

Comparison

s

r

z

valid

Modular
Multiplication

K= (,)xK yK

G= (,)xG yG

Scalar-point
Multiplication

Kk2

Gk1

G+ K = (,)k1 k2 x2 y2 x2 (mod n) = r?

Modular
Multiplication

(mod n)= r ∗ wk2

(mod n)= z ∗ wk1

(mod n)w = s−1

Fig. 2: Operations in ECDSA signature verification.

modulo inversion is significantly higher than the modular
multiplication, which is the case with FPGAs because DSP
blocks can perform fast multiplications.

C. ECDSA Verification Algorithm
A sender sends the message digest/hash z = H(m), the

signature (r, s), and the public key K = (xK, yK), which
are verified by the receiver. It is assumed that the receiver
knows the ECC domain parameters (a, G = (xG , yG), n, and
p given by NIST [10] for P -256 elliptic curve). Typically,
message digest is computed during verification, however, we
assume that it is precomputed (to be aligned with Blockchain
Machine accelerator) and hence is provided as the input.
Algorithm 1 describes the verification process, where the
output indicates whether the input signature is valid or not.
The algorithm performs modular reductions with respect to
two different primes: prime p for point arithmetic (line 5),
and order of the curve n for the rest of the operations (lines
2-4 and 6). Figure 2 illustrates a pictorial representation of
the verification algorithm, where it is evident that we need
to implement several modular arithmetic operations such as
modulo inverse, multiplication and reduction followed by
various point arithmetic operations such as addition, double
and scalar-point multiplication.

D. Related Work
Many previous works have proposed acceleration of modu-

lar multiplication, point arithmetic for ECC, and ECDSA sig-
nature verification in hardware (for ASICs, FPGAs and micro-
controllers), however, we report only the FPGA works [11]–
[17] here. The work in [17] focused on elliptic curves over
binary fields GF (2m) for simpler hardware implementation,
while other works [14], [18], [19] targeted non-256-bits prime
field. All these works are not of interest to blockchain plat-
forms because they typically use 256-bit prime field.

The works in [11], [12], [16] focused on accelerating only
point arithmetic for ECC over NIST P -256 elliptic curve, and
did not implement the entire ECDSA verification. Tachibana et
al. [15] accelerated ECDSA verification over Secp256k1 ellip-
tic curve for Bitcoin on an Intel Cyclone IV FPGA, achieving

145.52 ms per verification. Glas et al. [13] implemented an
ECDSA verification core for 256-bit prime field on Xilinx
Virtex-5 FPGA board. We achieve better performance than
these works, and will present a comparison in Section V.

III. FPGA-BASED ECDSA VERIFICATION ENGINE
In this section, we present the architecture of our efficient

ECDSA verification engine. Since ECDSA signature verifi-
cation algorithm deals with the information that is publicly
known, there is no secret information to leak through side-
channels while performing verification. This widens our choice
of algorithms for implementing various modules within the
ECDSA verification engine. Therefore, in our hardware imple-
mentation, we select algorithms that utilize minimal hardware
resources while resulting in low latency.

A. Modular Arithmetic

To efficiently implement 256-bit wide modular arithmetic on
an FPGA, we implement all modular arithmetic modules using
multi-word integer arithmetic [20]. In multi-word arithmetic,
a 256-bit field element a can be represented as

a = 2(t−1)WA[t− 1] + · · ·+ 22WA[2] + 2WA[1] +A[0] (1)

where W and t = 256/W define the word length and
the number of words to operate on respectively. We set the
value of W diligently for every operation to efficiently utilize
hardwired DSP blocks of the FPGA, and hence achieve a
higher maximum operating frequency.
Modular Subtraction: Subtraction in Fp can be performed
using Algorithm-2.8 from [20] with the multi-word integer
approach. The adder/subtractor in DSP blocks have 48-bit
wide inputs. However, for the multi-word integer approach,
the maximum bit width we can use is 32 bits (32 being
the largest integer dividing 256 symmetrically). Therefore,
to use DSP for subtraction, we set the parameter W as 32
and thus, we have t = 8 words to operate on. Along with
each subtraction operation, we subtract the previous carry bit
and store the next carry bit. As we operate on a single word
at a time, we utilize only one DSP block to implement the
modular subtraction operation. We perform modular addition
using the same module with 2′s complement input for the
second operand as point arithmetic (including point double
and add) in projective Chudnovsky coordinate system requires
only one modular addition operation. Implementing a separate
adder leads to inefficient resource utilization as the adder will
remain idle for most of the time.
Integer Multiplication Module: We adopt a hybrid approach
to integer multiplication through a combined schoolbook [21]
and multi-word Karatsuba [20] approach. Our target FPGA
board has DSP blocks with 27x18 bit wide multipliers.
However, both multi-word arithmetic and schoolbook algo-
rithm require operands to be split symmetrically (i.e., both
operands must have the same base). Therefore, we can use
at most a 16x16 bit wide multiplier to multiply two 256-
bit operands (16 being the largest number that can split 256
symmetrically). If we set W as 16, we will have t = 16
words to operate on, thus implementing just the schoolbook

Algorithm 2: Hybrid Integer Multiplication
Input : Integers a, b ∈ [0, p− 1], t = 8, l = 16
Output: c = (a.b)

1 Set (A[t-1],. . . ,A[0]) ← a, (B[t-1],. . . ,B[0]) ← b;
2 Set C[i] ← 0 for 0 ≤ i ≤ 2t− 1;
3 for i from 0 to t− 1 do
4 U ← 0;
5 for j from 0 to t− 1 do
6 (a1, a0) ← A[i], (b1, b0) ← B[i];
7 ab = a1b12

2l + [(a0 + a1)(b0 + b1)− a1b1 −
a0b0]2

l + a0b0;
8 (U,V) ← C[i+j] + ab + U;
9 C[i+j] ← V;

10 end
11 C[i+t] ← U;
12 end

multiplication algorithm [21] will lead to a high latency (at
least 256 clock cycles), which is not acceptable as many
multiplications are performed in point arithmetic. Therefore,
we use multi-word approach with schoolbook multiplication
to lower multiplication latency, as shown in Algorithm 2.

We first take the schoolbook multiplication algorithm and
set the parameter W as 32 (twice the input width of a
multiplier in DSP block) to split 256-bit operands into t = 8
32-bit words. Next, we target 32-bit operands and split them
into 16-bit operands and multiply these 16-bit operands using
Karatsuba equation (line 7) where l is 16. Moreover, as
multiplication operations in line 7 are independent, we unroll
the loops in the algorithm to perform multiplications and
accumulations in parallel. As a result, we can perform a 256-
bit integer multiplication in just 39 clock cycles using Algo-
rithm 2 while efficiently utilizing multipliers in DSP blocks.
Note that various existing works [22], [23] (implementing
different cryptographic schemes) exploit Karatsuba algorithm
to perform modular multiplication on an FPGA, howerver,
novelty of our work lies in the way we combine schoolbook
multiplication and Karatsuba algorithm to implement a low-
latency, parallel multiplier.
Fast P -256 Modular Reduction Module: The output of an
integer multiplication yields a 512 bits result that needs to be
reduced to 256 bits by performing modular reduction. In point
arithmetic, modular reduction is performed using the prime
p = P -256 while other modular reductions are performed
using order of the curve n (which is explained later).

NIST recommends a fast modulo reduction P -256 algo-
rithm [20] as P -256 is a general Mersenne prime. This algo-
rithm replaces large division operations with simple additions
and subtractions by exploiting the structure of the Mersenne
prime. Therefore, by using this algorithm, we can perform a
256-bit modular reduction using two left shifts (multiplication
by 2), four additions, and four subtractions. However, the
result generated from this algorithm can be in the range
−4p to 5p instead of 0 to p. So, we need to perform a
correction by either adding to or subtracting from the result
a suitable value of p within this range. This correction step,

Algorithm 3: Fast Reduction Modulo P -256
Input : 512-bit c = (c15, . . . , c2, c1, c0) in base 232

Output: r = c mod P -256
1 s[0] = (c7, c6, c5, c4, c3, c2, c1, c0);
2 s[1] = (c15, c14, c13, c12, c11, 0, 0, 0) << 1;
3 s[2] = (0, c15, c14, c13, c12, 0, 0, 0) << 1;
4 s[3] = (c15, c14, 0, 0, 0, c10, c9, c8);
5 s[4] = (c8, c13, c15, c14, c13, c11, c10, c9);
6 s[5] = (c10, c8, 0, 0, 0, c13, c12, c11);
7 s[6] = (c11, c9, 0, 0, c15, c14, c13, c12);
8 s[7] = (c12, 0, c10, c9, c8, c15, c14, c13);
9 s[8] = (c13, 0, c11, c10, c9, 0, c15, c14);

10 for i from 0 to 4 do
11 r = r + s[i], r = (r ≥ p) ? r − p : r
12 end
13 for i from 5 to 8 do
14 r = r − s[i], r = (r < 0) ? r + p : r
15 end

Algorithm 4: Efficient Comparison with P -256
Input : 257-bit r with 0 ≤ r < 2p, C0, C1, C2, C3

Output: r ≥ p
1 r0 = &r[95 : 0], r1 = r[191 : 96], r2 = r[223 : 192],

r3 = &r[255 : 224], r4 = r[256];
2 if (r4 = 1 or (r3 = C3 and r2 ≥ C2 and r1 > C1))

then return greater;
3 else if (r4 = 0 and r3 = C3 and r2 = C2 and

r1 = C1 and r0 = C0) then return equal;

however, requires performing many 256-bit comparisons to
figure out the exact range in which the result lies. On FPGAs,
a 256-bit comparator leads to long carry chains adversely
impacting the timing constraints of the design. Therefore, to
avoid performing many of such wide comparisons at once, we
check and correct the result immediately after each step of the
computation. The steps of our proposed fast modulo reduction
P -256 algorithm are shown in Algorithm 3. As we perform
addition operations in lines 10-12, we perform an immediate
correction by comparing the result with p. Similarly, after
subtraction operations in lines 13-15, we compare the result
with 0 to see if it is negative and correct it accordingly.

From Algorithm 3, it is evident that we avoid using many
256-bit wide comparators in parallel, but we still need a 256-
bit comparator to check if the intermediate result is ≥ p or not.
We further exploit the structure of the Mersenne prime and
propose Algorithm 4 to perform this comparison efficiently
without actual 256-bit comparators. Our algorithm is based
on the observation that P -256 can be split into four parts as
follows:
P0 = P [95 : 0] = ffffffffffffffffffffffff
P1 = P [191 : 96] = 0, P2 = P [223 : 192] = 1
P3 = P [255 : 224] = ffffffff

Using these four parts, we can generate the following four
conditions: C0 : &P0 = 1, C1 : P1 = 0, C2 : P2 = 1, C3 :
&P3 = 1, where & means an AND reduction. The algorithm

Algorithm 5: Hardware-friendly Barrett Reduction

Input : n, b = 4, k = ⌊logb n⌋ + 1, z, µ = ⌊ b
2k

n ⌋
Output: r = z mod n

1 q̂ ← (z >> 2(k − 1)).(µ >> 2(k + 1));
2 r ← z & (bk+1 − 1)− q̂.n & (bk+1 − 1);
3 if (r < 0) then r ← r + bk+1;
4 while (r ≥ n) do r ← r − n;

starts by splitting the input integer r in a similar fashion as
P -256 and an additional r4 for the 257th bit (as the input
integer is of 257-bits). First, we check if r4 is 1, then r is
definitely > p. However, if r4 is 0, then we need to evaluate
other conditions. If r2 ≥ 1 or r1 > 0 (line 2), then r > p.
Otherwise, if all four conditions on line 3 are satisfied, then
r = p. This algorithm converts 256-bit wide comparisons to
four 1-bit comparisons and can be efficiently implemented in
hardware using bit-slicing and unary & operator.

Modular Reduction over n: We propose to use the standard
Barrett reduction algorithm [20] for modulo reduction over
the prime n. Barrett reduction does not exploit the structure
of n but computes r = z mod n, by computing a value q̂,
which when multiplied with n and subtracted from z will give
the desired modular reduction value r. The algorithm requires
selecting a base b, which when chosen as a power of two
gives an efficient implementation in hardware. We select b
as 4 and we precompute the parameters of Barrett reduction
(k and µ) as they are fixed and do not change at any point
in computation. Our modified hardware-friendly version of
the Barrett reduction is shown in Algorithm 5. We perform
divisions using right shift operation (line 1) and modular
reductions using AND operation (line 2). This optimization
is possible because b is a power-of-2 and for powers-of-2,
modular reduction can be efficiently done by masking the
lower-order bits using AND operation. Thus, we avoid all wide
division operations. However, we need to perform two 258-bit
multiplications as the parameter µ is a 258-bit integer.

For 258-bit multiplication, we again use the hybrid approach
proposed in Algorithm 2. However, we set W = 6 and split
the input operands into 43-bit words (258/6 = 43). Further,
instead of a single Karatsuba split as in Algorithm 2, we
perform a two-level Karatsuba split to efficiently leverage the
DSP blocks. At level-1, we split 43-bit operands into 32- and
11-bit integers. Then at level-2, we split 32-bit integers into
16-bit integers (see Figure 3). Thus, we perform only 16×16,
16 × 11 and 11 × 11-bit multiplications instead of a 43-bit
multiplication.

A[0]A[1]A[5] ... B[0]B[1]B[5] ...

a1[0] a0[0]

258-bits 258-bits

43-bits

11-bits32-bits

b1[0] b0[0]

43-bits

11-bits32-bits

a1H[0] a1L[0]

16-bits16-bits

b1H[0] b1L[0]

16-bits16-bits

Level-1
Karatsuba split

Level-2
Karatsuba split

b0[0]

11-bits

a0[0]

11-bits

Fig. 3: Proposed 258-bit multiplication approach.

Modulo Inverse Module: NIST recommends using Extended
Euclidean algorithm [10] to compute modulo inverse in
ECDSA verification algorithm. However, extended Euclidean
algorithm is expensive to implement in hardware requiring
256-bit division and multiplication to compute quotient and
remainder respectively. We choose to implement an opti-
mized, faster modulo inverse algorithm proposed by Chen and
Qin [24]. This algorithm is suitable for hardware implemen-
tation as it has very low resource footprint and also incurs a
low latency. The algorithm computes a modulo inverse using
only right shift and addition operations and at any given time
only two 256-bit adders are operating in parallel. We observe
that the latency of this algorithm ranges from 35-600 clock
cycles depending on the input, however for real test cases,
the latency averages close to 550 clock cycles across multiple
evaluations. It is worth noting that we modified the actual
algorithm to take modulus as an input because we leverage
the same algorithm to perform modulo inverse with respect
to n (line 2 of Algorithm 1) as well as to convert projective
Chudnovsky coordinates back to affine coordinates wherein
we need to compute modulo inverse with respect to p.

B. Point Arithmetic

During ECDSA signature verification, we need to perform
two scalar-point multiplications and one point addition oper-
ation (line 5 in Algorithm 1). We first present our generic
approach to point arithmetic that can be leveraged in any
application requiring fast ECDSA signature verification. We
leverage the simultaneous-point multiplication (SPM) Algo-
rithm 6, also known as “Shamir’s trick”, to operate on both the
generator point (P) and public key coordinates (Q) at the same
time. In addition, this algorithm eliminates the need to perform
the point addition separately. We conducted an analysis on
how the number of operations varies when different point
representations such as binary, NAF, joint-sparse form (JSF),
and width-w NAF are used in Algorithm 6. We observe that
point double operations largely remain the same while point
addition operations can be reduced to as low as 112 when
width-w NAF is used. Note that width-w NAF conversion can
be done in hardware using Algorithm-3.35 from [20], and is

Algorithm 6: Width-w NAF method for SPM
Input : Width w, k1 and k2, points P and Q
Output: A = k1P + k2Q

1 Compute: iP and iQ for i ∈ {1, 3, . . . , 2w − 1};
2 Compute NAFw(k1) and NAFw(k2);
3 l = max{ℓ1, ℓ2} where ℓ1 and ℓ2 are lengths of

NAFw(k1) and NAFw(k2), A =∞;
4 for i from l − 1 down to 0 do
5 A = 2A;
6 if k1[i] > 0 then A = A+ k1[i]P;
7 else A = A− k1[i]P;
8 if k2[i] > 0 then A = A+ k2[i]Q;
9 else A = A− k2[i]Q;

10 end

Modulo
Inverse Compare

NAFw(k1)

Modular
Mult.

Integer
Mult.

Barrett
Reduction

Modular
Mult.

Integer
Mult.

Barrett
Reduction

Affine
Conversion

Modulo
Inverse

Integer
Mult.

Modular
Reduction

Simultaneous-point
Multiplication

Point
Add

Point
Double

s

r

z

v

NAFw(k2)

Memory (BRAM)

K= (,)xK yK

G= (,)xG yG

Fig. 4: Data flow in generic ECDSA verification engine.

trivial in comparison to point arithmetic. We use w = 4 to
keep the storage requirements minimal.

In Algorithm 6, point double operation (line 5) and
point additions (lines 6-9) cannot be done in parallel as
they depend on each other. However, we reduce the num-
ber of these operations by computing various values of
G (3G, 5G, 7G, 9G, 11G, 13G, 15G) offline and storing them
in BRAM because G is known in advance. This requires
1120 bytes of storage space but reduces the computation
on line 1 to only K (3K, 5K, 7K, 9K, 11K, 13K, 15K) in
hardware. For these values, 3K is computed by performing
a point double on K followed by a point addition. We store
the 2K value temporarily and reuse it; for example, 5K is
computed by performing a point addition between 3K and 2K.
Therefore, we only need one point double and seven point
addition operations in hardware to compute all the required
values. Overall, we significantly reduce the number of point
double and addition operations with the use of width-w NAF,
and offline and optimized computation for G and K.

C. ECDSA Verification Engine

Putting it all together, Figure 4 depicts the data flow in our
ECDSA verification engine using SPM algorithm. Although
the figure shows multiple modular arithmetic modules, we
instantiate only a single instance of these modules and sched-
ule different operations in parallel to efficiently utilize the
hardware resources. For example, we perform the NAFw(k2)
conversion in parallel with the second modular multiplication.
Similarly, NAFw(k1) conversion happens in parallel to the
computation on line 1 in Algorithm 6. Thus, no additional
clock cycles are spent in NAF conversions. From amongst all
the modules, integer multiplication and modular reduction are
the heavily utilized modules. It is worthwhile to reiterate that
an additional point add operation is not required here at it is
absorbed in the SPM operation. However, after the multiple-
point multiplication operation, we need an additional operation
to convert x from projective Chudnovsky coordinate back to
affine coordinate for final comparison.

IV. ECDSA VERIFICATION ENGINE FOR HL FABRIC

In this section, we propose optimizations in the context of
permissioned blockchains specifically HL Fabric. We exploit
the fact that some parameters are fixed apriori while other
parameters are available in advance, and hence both of these
can be preprocessed to speedup ECDSA verification operation.
More specifically, we take advantage of the fact that the
generator point G is fixed and the public key coordinates

Algorithm 7: Fixed-base NAF windowing for FPM
Input : Window width w, d = 256/w, k, point P
Output: A = kP

1 Precompute: Pi = 2wiP , 0 ≤ i ≤ d;
2 NAF(k),I = (2w+1 − 2)/3, A =∞, B =∞;
3 for j from I down to 1 do
4 For each i for which ki = ±j do B = B ± Pi;
5 A = A+ B;
6 end

K = (xK, yK) are known well in advance before the ECDSA
verification starts. The ProtocolProcessor in Blockchain Ma-
chine (see Figure 1) processes the incoming data and extracts
the public key and ECDSA signature information. Therefore,
as soon as the public key coordinates are available, we can
start processing them. With this goal in mind, we leverage the
fixed-point multiplication (FPM) algorithm (see Algorithm 7)
to perform point arithmetic instead of simultaneous-point
multiplication algorithm (see Algorithm 6).

Algorithm 7 starts by precomputing various powers-of-2
point multiplications for a point P which is known apriori
(for example, when w = 4, then precomputations will be
P, 16P, 256P, and so on). As the generator point is fixed, we
precompute these values offline and store the values in BRAM
on FPGA. For the public key coordinates, we design a separate
precompute block, outside of the ECDSA verification en-
gine, which runs binary scalar-point multiplication algorithm
(Algorithm-3.27 in [20]) with point double operations only
to precompute the values mentioned earlier (i.e., P ,16P , etc).
Point addition operations are not required as we are computing
power-of-2 point multiplications only, which can be computed
using successive point double operations. We further optimize
the precompute block by reducing the number of point double
operations. For example, if we want to compute 256P , we
need not start all the way from P . Instead, we can use the
value of 16P that was computed in the previous step, thus
reducing the number of point double operations from wi to
w in each step i where 0 ≤ i ≤ d. This optimization helps
reduce the number of point double operations from over 8000
to only 252 when w = 4 and d = 64.

The computation within the actual ECDSA verification
operation reduces to lines 3-6 of Algorithm 7. Consequently,
ECDSA verification comprises of just point addition opera-
tions with the point double operations moved to precomputa-

tion. We use the fixed-base (with base w = 4) NAF windowing
method to reduce the number of point addition operations.
Note that Algorithm 7 is executed twice; once for the generator
point G accessing offline computed point values in line 1, and
the second time for public key K accessing precomputed point
values in line 1.

Figures 5(a) shows the architecture of our HL Fabric-
specific ECDSA verification engine. The precompute block
is placed inside the ProtocolProcessor to store all the re-
quired point values in BRAM. With projective Chudnovsky
coordinates, we need about 20KB of memory to store all
the precomputed point G and K values. In a permissioned
blockchain like HL Fabric, the number of nodes are limited
and hence the number of unique identities (public keys) is
limited and those identities are known apriori. Moreover, there
may only be tens of unique identities, thus storage of pre-
computed points will not incur a high memory overhead. The
precompute block has its own modular arithmetic modules and
FSM controlling movement of data between these modules.
The ECDSA verification engine instantiates its own modular
arithmetic modules, again only one module per operation to
keep the resource utilization low. This is especially beneficial
for Blockchain Machine where many ECDSA verification
engines are desirable inside the BlockProcessor module.

Figure 5(b) depicts the data flow in our ECDSA verification
engine with the precompute block. The precomputed points
are read from BRAM by the ECDSA verification engine. The
read from BRAM is not a bottleneck as read will happen
once in a while and then hundreds of clock cycles are spent
on processing the data. Since the number of unique public
keys is limited, precompute block is executed only when
a new public key is encountered. Hence, the precompute
block does not become a bottleneck. Both in precompute and
ECDSA verification engine, with single instantiation of the
modular arithmetic modules, some operations are performed
serially while different operations are efficiently scheduled
in parallel. For example, the NAF conversion of k1 and k2
happens in parallel with the first FPM and the second modular
multiplication involving k1 respectively. After FPM, a point
addition operation is required (line 5 of Algorithm 1) and
conversion back to affine coordinates for comparison.

V. EVALUATION

We designed our ECDSA verification engines in Verilog
2001 and synthesized them using Xilinx Vivado 2019.2. For

(b)

Precompute for Key

Binary-point Multiplication

Point Double

Point
Add

Modulo
Inverse

Compare

NAF(k2)

NAF(k1)

Modular
Mult.

Integer
Mult.

Barrett
Reduction

Modular
Mult.

Integer
Mult.

Barrett
Reduction

Fixed-
point Mult.

Point
Add

Fixed-
point Mult.

Point
Add

Affine
Conversion

Modulo
Inverse

Integer
Mult.

Modular
Reduction

Memory (BRAM)

s

r

z

valid

(a)

ECDSA Verification Engine

Control Unit (FSM)

Modulo
Inverse

Modular
Reduction

Integer
Mult.

Modular
Subtraction

Barrett
Reduction

43-bit
Multiplier

Memory (BRAM)

Precompute

Modular
Reduction

Integer
Mult.

Modular
Subtraction

Memory (BRAM)

Control
Unit (FSM)

K= (,)xK yK

K= (,)xK yK G= (,)xG yG

Fig. 5: ECDSA verification engine with Precompute block: (a) Architecture (b) Data flow.

functional verification, we generated test cases using open-
source code from OpenSSL library [25] as well as from
actual data (public key, signature, and hash from Hyperledger
Fabric). We also successfully verified the test vectors [26] from
NIST for P -256 ECDSA signature verification. We targeted
Xilinx Alveo U250 card because blockchains are typically
deployed on a cloud server with an FPGA accelerator card.
Since our goal is to integrate the ECDSA verification engine
into the blockchain hardware accelerator from [7], which is
quite complex and operates at 250 MHz, we limit the operating
frequency of our designs to 250 MHz as well even when
it is possible to obtain higher frequencies with DSP blocks
like in [11]. This restriction enables better scalability within
the blockchain accelerator by instantiating multiple ECDSA
engines for distributed computation.

Throughout this section, we report frequency (freq.) in
MHz, latency in clock cycles, and throughput (TP) in oper-
ations per second. When comparing our work with existing
state-of-the-art implementations, we cautiously compare the
clock cycles of different designs instead of absolute run-
times to overcome the inherent improvements from upgraded
technologies and operating frequencies, and hence provide
a fair comparison. In an ideal situation, the existing works
should have been implemented on the Alveo U250 FPGA
board as well. However, those designs are not open-source
and implementation of each requires significant effort. Fur-
thermore, we do not present direct comparison results with
ASIC/CPU/GPU implementations because our goal is not to
compete with ASIC/CPU/GPU implementations but to provide
the best FPGA implementation that can be used in accelerators
for permissioned blockchains (since they are naturally suitable
for FPGA based acceleration [7]).

A. Modular Arithmetic

We first discuss the area footprint and latency of the
individual modular arithmetic modules as listed in Table I.
With all the proposed optimizations, our modular arithmetic
modules incur low resource utilization. The integer multi-
plication module consumes the most LUTs, which can be
reduced using BRAM-based optimizations. We, however, leave
this optimization for future work. Most modules perform
fast computations except for Barrett reduction which has the
highest latency because of two serial 258-bit multiplications.
We made this design choice to keep the resource utilization
low. Moreover, modular reduction using Barrett reduction is
performed only in lines 3, 4, and 6 of Algorithm 1, which is
not the critical path (line 5 is the critical path in ECDSA
verification). Note that our modular subtraction module is
1.8× faster and our modular multiplication (integer multipli-
cation + P -256 modular reduction) is 1.2× faster than the
implementations in state-of-the-art work [11].

B. Point Arithmetic

We evaluate the performance of our point addition (PA)
and point double (PD) operations. For a fair comparison,
we also report the latencies from state-of-the-art FPGA-based

TABLE I: HARDWARE RESULTS OF MODULAR ARITHMETIC MODULES.

Operation LUT FFs DSP Latency
Modular subtraction 616 781 1 10
Integer multiplication 5471 7980 128 39
P -256 Modular Reduction 2225 789 0 19
Barrett Reduction 2130 3597 9 1, 552
Modulo Inverse 3503 1313 0 550

TABLE II: PERFORMANCE COMPARISON OF POINT ARITHMETIC.

Operation Platform Freq. Latency TP
PA [Our work] Alveo U250 250 622 402K
PA [11] Virtex-4 375 980 382K
PD [Our work] Alveo U250 250 435 574K
PD [11] Virtex-4 375 700 535K
PM [Our work] Alveo U250 250 190, 976 1, 309
PM [11] Virtex-4 375 303, 450 1, 236
PM [12] Virtex-2 Pro 108.2 451, 733 240
PM [16] Virtex-7 124.2 462, 520 268
PM [27] Virtex-2 Pro 67 567, 500 118
PM [28] Virtex-2 39.5 960, 000 41
PM [29] Virtex-E 39.7 987, 500 40
SPM [Our work] Alveo U250 250 231, 406 1, 080
SPM [11] Virtex-4 375 366, 905 1, 022
SPM-NAF [Our work] Alveo U250 250 181, 024 1, 381

work [11], which uses projective Chudnovsky coordinates like
our implementation. We observe that clock cycles of our
point add and double operations are ∼1.6× lower than their
corresponding operations (see first four rows of Table II).
Note that their design involves a dual clock which is much
more complicated to implement than our design that uses
only a single clock. Moreover, the authors in [11] focused on
optimizing only the point arithmetic, and did not implement
the entire ECDSA verification algorithm. This makes it much
easier for their stand-alone point arithmetic modules to run at
a higher frequency.

Now we compare the latencies of our scalar point multipli-
cation (PM) with state-of-the-art works that implement scalar
point multiplication (see Table II). We observe that our PM
is ∼1.6× to ∼5× faster than these existing works in terms
of clock cycles. As most of these prior implementations were
done using binary double and add algorithm, our PM is also
implemented using the same approach. Note that implementa-
tion done by Kudithi et al. [16] works with affine coordinates
while the rest of the works use projective coordinates. Next, we
compare the latencies of our simultaneous-point multiplication
(SPM) operation. As mentioned in Section III-B, we perform
SPM operation using width-4 NAF approach. However, for a
fair comparison with [11], which uses a binary representation,
we estimated the latencies using the number of operations
performed in Algorithm 6 with binary representation. More
importantly, our SPM with width-4 NAF incurs about half the
latency owing to our faster modular arithmetic modules.

C. ECDSA Verification Engine

Table III presents the hardware resource utilization and
latency of the ECDSA verification engine. Our ECDSA ver-
ification engine takes ∼190, 000 clock cycles for a single
verification leading to a throughput of 1, 315 verifications/sec.
Although many prior works have accelerated point arithmetic
on FPGA, most works did not implement the entire ECDSA

TABLE III: HARDWARE RESULTS OF ECDSA ENGINE.

Design LUT FFs DSP BRAM Latency
ECDSA verf. 24394 10961 137 5 190, 000

TABLE IV: PERFORMANCE COMPARISON OF ECDSA ENGINE.

Work Platform Freq. Latency TP
Our work Alveo U250 250 190, 000 1, 315
[13] Virtex-5 50 454, 140 110

verification algorithm. We found only one relevant comparable
work that accelerated ECDSA signature verification for NIST
P -256 on FPGA, which is reported in Table IV. Glas et al. [13]
reported implementation results of the complete signature
generation and verification unit on a Xilinx XC5VLX110T
Virtex-5 FPGA. Their signature verification unit includes a
hash generator ip which incurs a latency of 68 clock cycles
that we have adjusted accordingly for a fair comparison.
Their design achieves a throughput of 110 verifications/sec
that is about 12× lower than the throughput of our ECDSA
verification engine. We do not compare the hardware resource
utilization as this design is implemented on a different FPGA.
Moreover, we cannot estimate the hardware cost of this design
for Alveo U250 FPGA as it is not open-sourced.

D. ECDSA Verification Engine for HL Fabric

Table V presents the hardware resource utilization and
latency of our ECDSA verification engine with precompute
block. We observe that the precompute block incurs a latency
of ∼120, 000 clock cycles. Then, the actual ECDSA verifica-
tion engine requires only ∼92, 000 clock cycles to perform
single signature verification. With this approach, we achieve
a throughput of 2, 717 signature verifications/sec.

We also evaluate the HL Fabric-specific ECDSA verifi-
cation engine in the context of Blockchain Machine [7].
Table VI presents the throughput (transactions per second) of
Blockchain Machine with both the generic and Hyperledger
Fabric-specific ECDSA verification engines. We observe a 2×
improvement in throughput with our precompute optimization.
We also change the number of ECDSA verification engines
from 4-10, and observe that both types of engines scale the
throughput in a similar trend (∼1.57× improvement).

TABLE V: HARDWARE RESULTS OF ECDSA ENGINE (250 MHZ).

Design LUT FFs DSP BRAM Latency
Precompute 14088 1417 129 15 120, 000
ECDSA verf. 21759 5625 137 15 92, 000

TABLE VI: TP OF BLOCKCHAIN MACHINE WITH ECDSA ENGINES.

No. of Engines Generic ECDSA HL Fabric ECDSA
4 1, 290 tps 2, 650 tps
7 2, 525 tps 5, 200 tps
10 3, 650 tps 7, 520 tps

VI. CONCLUSION
In this work, we focused on an FPGA-based efficient

implementation of ECDSA signature verification, in order
to improve performance of permissioned blockchains that

aim to use FPGA-based accelerators. We proposed several
FPGA-specific algorithmic optimizations for modular and
point arithmetic, and combined those to create two different
ECDSA verification engines. Our results demonstrate 368µs
per verification and 2, 717 verifications/sec at 250 MHz.

REFERENCES

[1] P. Thakkar and S. Nathan, “Scaling hyperledger fabric using pipelined
execution and sparse peers,” in CoRR, arXiv:2003.05113, 2021.

[2] Hyperledger, “Hyperledger Fabric,” Online: https://www.hyperledger.
org/projects/fabric, 2019.

[3] M. del Castillo, “Forbes Blockchain 50 2021,” https://www.forbes.com/
sites/michaeldelcastillo/2021/02/02/blockchain-50, 2021.

[4] Gorenflo et al., “FastFabric: Scaling Hyperledger Fabric to 20,000
Transactions per Second,” in IEEE ICBC, 2019.

[5] Javaid et al., “Optimizing validation phase of hyperledger fabric,” in
IEEE 27th International Symposium on MASCOTS, 2019.

[6] Chung et al., “Performance Tuning and Scaling Enterprise Blockchain
Applications,” in CoRR, arXiv:1912.11456, 2019. [Online]. Available:
http://arxiv.org/abs/1912.11456

[7] Javaid et al., “Blockchain Machine: A network-attached hardware ac-
celerator for hyperledger fabric,” in ICDCS, 2022.

[8] Xilinx, “Xilinx Alveo,” Online: https://www.xilinx.com/products/
boards-and-kits/alveo.html, 2020.

[9] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation
using mixed coordinates,” in Asiacrypt 1998. Springer, pp. 51–65.

[10] NIST, “FIPS DSS,” Online: https://nvlpubs.nist.gov/nistpubs/FIPS, 2013.
[11] T. Güneysu and C. Paar, “Ultra high performance ecc over nist primes

on commercial fpgas,” in CHES. Springer, 2008, pp. 62–78.
[12] Vliegen et al., “A compact fpga-based architecture for elliptic curve

cryptography over prime fields,” in IEEE ASAP 2010, pp. 313–316.
[13] Glas et al., “Prime field ecdsa signature processing for reconfigurable

embedded systems,” IJRC, vol. 2011.
[14] Sghaier et al., “Design and implementation of low area/power elliptic

curve digital signature hardware core,” Electronics, vol. 6, p. 46, 2017.
[15] Tachibana et al., “Fpga implementation of ecdsa for blockchain,” in 2019

IEEE ICCE-TW. IEEE, 2019, pp. 1–2.
[16] T. Kudithi and R. Sakthivel, “High-performance ecc processor architec-

ture design for iot security applications,” The Journal of Supercomput-
ing, 2019.

[17] Sau et al., “Binary field point multiplication implementation in fpga
hardware,” in Intelligent and Cloud Computing. Springer, 2021.

[18] Z. Liu, H. Seo, J. Großschädl, and H. Kim, “Efficient implementation
of nist-compliant elliptic curve cryptography for 8-bit avr-based sensor
nodes,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 7, pp. 1385–1397, 2015.

[19] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” in International
workshop on CHES. Springer, 2004, pp. 119–132.

[20] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[21] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of large integer
multiplication methods on hardware,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1369–1382, 2017.

[22] Zutter et al., “Acceleration of rsa cryptographic operations using fpga
technology,” in 20th IEEE International Workshop on DEXA, 2009.

[23] Xie et al., “Efficient fpga implementation of low-complexity systolic
karatsuba multiplier over gf(2m) based on nist polynomials,” IEEE
Transactions on Circuits and Systems I, vol. 64, pp. 1815–1825, 2017.

[24] C. Chen and Z. Qin, “Fast algorithm and hardware architecture for
modular inversion in gf (p),” in 2009 Second International Conference
on Intelligent Networks and Intelligent Systems. IEEE, 2009, pp. 43–45.

[25] T. O. project, “OpenSSL—cryptography and SSL/TLS toolkit,” Online:
https://www.openssl.org/, 2021.

[26] NIST, “FIPS DSA TEST VECTORS,” Online: https://csrc.nist.gov/
projects/cryptographic-algorithm-validation-program/digital-signatures.

[27] N. Mentens, “Secure and efficient coprocessor design for cryptographic
applications on fpgas,” https://lirias.kuleuven.be/retrieve/67565, 2007.

[28] McIvor et al., “An fpga elliptic curve cryptographic accelerator over
gf(p),” IET Conference Proceedings, pp. 589–594(5), January 2004.

[29] Schinianakis et al., “An rns implementation of an fp elliptic curve point
multiplier,” IEEE Transactions on Circuits and Systems I, 2008.

