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Abstract—Novel sensor processing algorithms face many hur-
dles to their adoption. Sensor processing environments have
become increasingly difficult with an ever increasing array of
threats. These threats have, in turn, raised the bar on deploying
new capabilities. Many novel sensor processing algorithms exploit
or induce randomness to boost algorithm performance. Co-
designing this randomness with cryptographic features could
be a powerful combination providing both improved algorithm
performance and increased resiliency. The emerging field of
signal processing in the encrypted domain has begun to explore
such approaches. The development of this new class of algorithms
will require new classes of tools. In particular, the foundational
linear algebraic mathematics will need to be enhanced with
cryptographic concepts to allow researchers to explore this new
domain. This work highlights a relatively low overhead method
that uses homomorphic encryption to enhance the resiliency of
a part of a larger sensor processing pipeline.

Index Terms—sensor data, homomorphic encryption, multi-
party secure computing, matrix operations.

I. INTRODUCTION

The increased use of small, networked sensors enabled
by commercial-off-the-shelf (COTS) internet-of-things (IoT)
technology has made sensor data processing an important
computing challenge in a wide range of applications. The
data processing algorithms implemented in these sensors range
from simple, low-latency ones to complex, hard real-time,
high-throughput ones. Advanced sensor processing algorithms
such as compressed sensing [1], super-resolution [2], [3], [4],
low-probability of detection (LPD) waveforms [5], bistatic
sensors [6], [7], [8], data sampling [9], non-linear equaliza-
tion [10], and multi-input-multiple-output (MIMO) [11], [12]
techniques can be computationally intensive.

Nowadays, in sensor data processing applications, in ad-
dition to the conventional performance, latency and data
storage challenges, serious issues of privacy and integrity
are emerging. The privacy and integrity of both data and
processing algorithm are vital in many safety or security
critical applications [13]–[15]. The networked, distributed, and
highly accessible nature of these sensors create a new and
particularly challenging threat landscape [16]. The need to
provide security and cyber-resiliency against these threats is

yet another hurdle to the deployment of advanced sensor
processing algorithms.

There are numerous techniques to protect sensitive data that
have varying levels of computational overhead and varying
levels of security [17]–[19]. For example, tools such as Com-
puting on Masked Data (CMD) [20], [21], CryptDB [22] and
Arx [23] use different types of encryption for different opera-
tions in order to minimize computational overhead (sometimes
at the cost of security). In general, for a given application, there
are a number of candidate privacy and integrity techniques
that can be used. Each of these options typically have varying
performance and security guarantees.

The emerging field of signal processing in the encrypted
domain (SPED) [24] combines signal processing and encryp-
tion to make sensor data more resilient to classes of threats.
A special issue of the IEEE Signal Processing Magazine
discussed, in depth, the motivation for signal processing in the
encrypted domain [24]. In this issue, various applications such
as biometrics, media searching, and speech processing were
discussed within the context of privacy preserving techniques
such as Homomorphic Encryption (HE) [25] and Multiparty
Computation (MPC) [26]. For example, in [27], the author
discusses secure construction of a variety of signal processing
and machine learning algorithms such as face recognition,
clustering and recommender systems.

The above SPED examples provide resiliency to standard
sensor processing algorithms. Advanced sensor processing
algorithms present a wider range of opportunities to include
SPED concepts. Many novel sensor processing algorithms
exploit or induce randomness to boost algorithm performance.
Co-designing this randomness with cryptographic features
could be a powerful combination providing both improved
algorithm performance and increased resiliency. In this work,
we extract and examine two algebraic kernels that form the
basis of HE and MPC algorithms within the context of matrix-
vector operations that dominate sensor processing algorithms.

II. LINEAR ALGEBRA KERNELS AND OPERATIONS

Commonly, signal processing algorithms express the oper-
ations to be performed on signals in a linear algebraic form



for compact and efficient execution. One of the fundamental
building blocks of signal processing is convolution operation.
Convolution is a operation that expresses the amount of
overlap of a function as it is shifted over another function.
Convolution can express the output of a linear time invariant
system. Given an impulse response h and an input signal x,
the output y is given as the convolution of x and h, denoted as
y = x ∗h. These operations and many more can be expressed
using linear algebra.

For example, let us consider a discrete signal x =
(x1, x2, ..., xn) that is going through a system with impulse
response h = (h1, h2, ..., hm). The result, y = xh is given by:

yn =
∑∞

m=−∞ xmhn−m.

This can also be written in matrix form as:

y =



h1 0 ... 0
h2 h1 ... 0
... ... ... ...

hm−1 ... ... h1
hm hm−1 ... h2
... ... ... ...
0 0 ... hm




x1
x2
...

xn−1
xn


Essentially, the convolution becomes a matrix-vector multi-

plication. Now, suppose that we wish to keep either the signal
or filter response encrypted. The following property allows
us to do convolution (or other similar linear algebraic opera-
tions) between encrypted and non-encrypted signals when the
encryption is done using a Paillier cryptosystem that supports
homomorphic addition (where E(m) signifies the encrypted
version of the message/content/data m):

E(m1 +m2) = E(m1) . E(m2) (1)

c∏
i=1

E(m1) = E(c . m1) (2)

Although, there are many signal processing algorithms
with varying degrees of complexity, they are often using
compositions of simple linear operations, which can be real-
ized as a combination of Basic Linear Algebra Subprograms
(BLAS) kernel calls [28]. Indeed, the BLAS kernels are
used extensively in the linear algebra and signal processing
community, including the emerging field of signal processing
in the encrypted domain (SPED).

Operations in BLAS library can be classified in levels one
through three as follows. The Level 1 BLAS - which is vector
operations on strided array operation - is expressed as y ←
αx+ y, where α and x are a scalar and a vector, respectively.
The Level 2 BLAS expression - a generalized matrix-vector
multiplication operation - is y ← αAx + βy. The level 3
BLAS expression — with matrix-matrix operations — is y ←
αABx+ βC.

III. HOMOMORPHIC ENCRYPTION OPERATION OF LINEAR
ALGEBRA KERNELS

In this section, we provide an overview on how different
homomorphic encryption schemes can be used to perform the
linear algebraic operations of the previous section.

A. Brief Overview of Homomorphic encryption from learning
with errors

Gentry et al. [29] proposed a fully homomorphic encryption
(FHE) scheme based on learning with errors (LWE) problem.
This scheme is popularly known as the Gentry-Sahai-Waters
(GSW) scheme and performs homomorphic encryption op-
erations using approximate eigenvector method. The scheme
is asymptotically faster as it computes matrix addition and
multiplication for homomorphic addition and multiplication
operations respectively. Other popular algorithms based on the
hardness of the (Ring) Learning With Errors (RLWE) prob-
lem include Brakerski-Gentry-Vaikuntanathan (BGV) [30],
Brakerski/Fan-Vercauteren (BFV) [31], and Cheon-Kim-Kim-
Song (CKKS) [32]. There are open-source software li-
braries [33] and hardware primitives for accelerating the core
of kernels in these different algorithms [34].

B. Secure Matrix Multiplication Using BFV/LWE-based Ho-
momorphic Encryption

Doung et al. [35] proposed a way to securely multiply two
matrices using the somewhat homomorphic encryption scheme
BFV, based on RLWE. They advance the idea proposed by
Yasuda et al. [36], [37] for secure inner product computation
to perform matrix multiplication. They also propose a new
method to pack a matrix into a single ciphertext so as to
reduce the size of the ciphertext and also the computation cost
to just one homomorphic multiplication to perform a matrix
multiplication operation.

Observation
• A large integer can be packed in a single ciphertext to

enable efficient computation of sums and products over
packed ciphertexts. Hence, a message M of up to n
bits is broken into a binary vector (m0, . . . ,mn−1) and
associated with a polynomial of degree less than or equal
to n− 1 as follows:

pm(M) =
n−1∑
i=0

mix
i (3)

• Using the packed ciphertexts, polynomial addition and
multiplications can be performed in a straightforward
way.

• To perform secure inner product using a single homomor-
phic multiplication, the packing can be done as follows:

pm(1)(A) =
m−1∑
i=0

aix
i

pm(2)(A) = −
m−1∑
i=0

aix
n−i



Synopsis
• Using the above packing method (to compute inner

product) requires m2 homomorphic multiplications to
compute a matrix multiplication of m × m matrices.
Hence, the authors propose two methods to reduce the
number of computations.

• Binary matrix multiplication
Let A and B be two m × m matrices with binary
entries. Let A1, . . . , Am denote the row vectors of A
and BT

1 , . . . , B
T
m the column vectors of B.

In order to compute the matrix multiplication, AB of
two binary matrices, one needs to compute the inner
products 〈Ai, B

T
j 〉 for i, j = 1, . . . ,m.

Packing each row of Ai = (ai,0, . . . , ai,m−1) and
each column BT

j = (bj,0, . . . , bj,m−1) can be done as
follows:

pm(1)(Ai) =
m−1∑
u=0

ai,ux
u

pm(2)(BT
j ) = −

m−1∑
v=0

bj,vx
n−v

We can define following two polynomials using the
above representation of matrix A and B:

Pol(1)(A) = pm(1)(A1) + · · ·+ pm(1)(Am)xm(m−1)

Pol(2)(B) = pm(2)(BT
1 ) + · · ·+ pm(2)(BT

m)xm(m−1)

Now to obtain the matrix multiplication AB, there can
be two different approaches.

The first approach assumes n ≥ m2, then for each
j = 1, . . . ,m, let ctj = ct

(1)
mat(A) ∗ ct(2)(BT

j ) and let
Dec(ctj , sk) ∈ Rt denote the decryption result. Then,
for each j = 1, . . . ,m, the inner product 〈Ai, B

T
j 〉 is

the coefficient of x(i−1)m in Dec(ctj , sk). This is true
because Dec(ctj , sk) = Pol(1)(A)× pm(2)(BT

j )

=
∑m

i=1 pm
(1)(Ai)× pm(2)(BT

j )x(i−1)m

For a fixed index i, we have pm(1)(Ai) ×
pm(2)(BT

j )x(i−1)m = 〈Ai, B
T
j 〉x(i−1)m+ other terms

of degree n − v + u + (i − 1)m, with u 6= v and
u, v ∈ {0, . . . ,m − 1}. This implies that the terms of
degree (i−1)m is exactly the term of degree (i−1)m
in pm(1)(Ai)× pm(2)(BT

j )x(i−1)m.

With this approach, after m homomorphic multipli-
cations over the Somewhat Homomorphic Encryption
(SHE) scheme, we get the resulting matrix multiplica-
tion AB.

The second approach assumes n ≥ m3, then for each
j = 1, . . . ,m, let ctj = ct

(1)
mat(A) ∗ ct(2)mat(B) and let

Dec(ctj , sk) ∈ Rt denote the decryption result. Then,
for each i and j, the inner product 〈Ai, B

T
j 〉 is the

coefficient of x(j−1)m
2+(i−1)m in Dec(ctj , sk). This

is true because Dec(ctj , sk) = Pol(1)(A)×Pol(2)(B)

=
∑m

i=1

∑m
j=1 pm

(1)(Ai) ×
pm(2)(BT

j )x(j−1)m
2+(i−1)m

The term of degree (j−1)m2+(i−1)m in Dec(ct, sk)
is exactly the term of degree (j − 1)m2 + (i− 1)m in
pm(1)(Ai)×pm(2)(BT

j )x(j−1)m
2+(i−1)m ∈ R. Hence,

the coefficient of x(j−1)m
2+(i−1)m in Dec(ct, sk)

gives the inner product 〈Ai, B
T
j 〉.

This approach requires only one homomorphic mul-
tiplication on packed ciphertexts for secure matrix
multiplication.

• Non-binary matrix multiplication
Let A and B be two m × m matrices whose entries
are integers of less than p bits. Let A(1), . . . , A(m) and
B(1), . . . , B(m) be the rows of A and BT respectively.
For i = 0, . . . ,m − 1, we can write A(i) =
(a

(i)
0 , . . . , a

(i)
m−1) and B(i) = (b

(i)
0 , . . . , b

(i)
m−1). For a

chosen integer r > 0, each integral entry a
(i)
k in the

base-r representation can be written as follows:

a
(i)
k =

d−1∑
u=0

a
(i)
kur

u with a
(i)
ku ∈ 0, 1, . . . , r − 1 (4)

where d = dlogr2pe.
a
(i)
k can be packed as

a
(i)
k =

d−1∑
u=0

a
(i)
kux

u ∈ R = Z[x]/(xn + 1) (5)

Then each row of A(i) and the column B(j) of A and
B respectively, can be associated to the polynomials
in the ring R as follows:

pm(1)
m,p,r(A(i)) =

m−1∑
k=0

a
(i)
k (x)x2kd (6)

pm(2)
m,p,r(B(j)) = −

m−1∑
l=0

b
(j)
l (x)x(n−2ld) (7)

The final polynomials that can be asso-
ciated to A and B are: Pol(1)(A) =

pm
(1)
m,p,r(A(1)) + · · · + pm

(1)
m,p,r(A(m))x(m−1)2md =∑m

i=1 pm
(1)
m,p,r(A(i))x(i−1)2md Pol(2)(B) =

pm
(2)
m,p,r(B(1)) + · · · + pm

(2)
m,p,r(B(m))x(m−1)2m

2d =∑m
j=1 pm

(2)
m,p,r(B(j))x(j−1)2m

2d

The first approach assumes n ≥ 2md(m+1), then for
each j = 1, . . . ,m, let ctj = ctmat(A) ∗ ct(2)m,p,r(B(j))
and let Dec(ctj , sk) ∈ Rt denote the decryption result.
Then, for j = 1, . . . ,m, the inner product 〈A(i), B(j)〉
is the sum of the terms of degree greater or equal to (i−
2)2md and less than (i− 1)2md+ 2d in Dec(ctj , sk)
evaluated at x = r.

The second approach assumes n ≥ 2m3d+2md+2d,
then for each j = 1, . . . ,m, let ct = ct

(1)
mat(A) ∗

ct
(2)
mat(B) and let Dec(ctj , sk) ∈ Rt denote the de-

cryption result. Then, for each i and j, the inner



product 〈A(i), B(j)〉 is the sum of the terms of degree
greater or equal to (i−2)2md+ (j−1)2m2d and less
than (i− 1)2md+ (j − 1)2m2d+ 2d in Dec(ctj , sk)
evaluated at x = r.

Pros
• The proposed approach can be used to perform a va-

riety of other operations like matrix-vector operations,
and distributed matrix operations. Vector additions and
multiplications can be readily performed because of the
underlying RLWE-scheme.

Cons
• For further operations, the computed coefficients will

have to be rearranged. This cost can be huge with large
matrices.

• The second approach in both the binary and non-binary
matrix multiplication requires a large value of n making
the approach very expensive.

• The proposed approach will work well for square ma-
trices; rectangular matrix will have to be padded with
zeros and converted to a square matrix before performing
operations on them.

C. Generalized Matrix-Vector Operations Using RLWE-based
Homomorphic Encryption

Halevi and Shoup [38] describe a way to perform some of
the linear algebra operations like matrix-vector multiplication
operations using HElib software library. HElib library imple-
ments homomorphic encryption proposed in the RLWE-based
Brakerski-Gentry-Vaikuntanathan (BGV) scheme.

Synopsis:
• To perform matrix-vector multiplication, we need to

perform w = Av where w and v are vectors and
we are given the columns of the matrix as vectors,
A = (c0 | . . . | cn−1). To multiply A and v, the operation
that needs to be performed is

∑n−1
i=0 v[i]ci.

• The vector v will need to be fully replicated to obtain the
vectors v0, · · · , vn−1, and then compute w =

∑n−1
i=0 vi×

ci.
A full replication of vector v = [0, 1, 2, 3] will yield
v0 = [0, 0, 0, 0], v1 = [1, 1, 1, 1], v2 = [2, 2, 2, 2], v3 =
[3, 3, 3, 3].

• If a matrix is presented in a row-order format instead,
then we could transpose the matrix A and then use the
similar procedure listed above to perform matrix-vector
multiplication. Another approach could be to have A
stored as vectors r0, · · · , rn−1. First compute the vectors
pi = v × ri for i ∈ [n] and then compute the entries of
w by computing w[i] =

∑
i pi[j] for i ∈ [n].

• Another convenient representation of a matrix is the
diagonal order representation (more useful if a matrix is
to be kept in plaintext).

We represent the matrix by n vectors d0, · · · , dn−1 that
contain the generalized diagonals of A, namely, di =
(A0,i, A1,i+1, · · · , An−1,n+i−1), so di[j] = Aj,j+1.

Example of diagonal order representation of matrix:

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3



=


a0,0 a1,1 a2,2 a3,3
a0,1 a1,2 a2,3 a3,0
a0,2 a1,3 a2,0 a3,1
a0,3 a1,0 a2,1 a3,2


Then, the product w = Av can be computed as w =∑n−1

i=0 di × (v � i), where � represents rotation of v
by i times.

By rotating the vector v, aim is to achieve
[v0, v1, v2, v3], [v1, v2, v3, v0], [v2, v3, v0, v1], [v3, v0, v1, v2].

This approach will require n − 1 rotations, and n
multiplications and additions to perform a matrix-
vector multiplication.

• Mishra et al., in their work [39], make use of the linear
algebra operations proposed here along with their own
previous work [35] and propose efficient ways to perform
matrix multiplication operations.

Pros:
• The proposed approach can be easily extended to perform

matrix-matrix operations.

Cons:
• The elements will require to be rearranged to its correct

location after the operations are performed.

D. Paillier-Based Private Multi-party Matrix Multiplication
and Trust Computations

Dumas et al. [40] propose a protocol for securely computing
dot-product of two vectors wherein elements of the vector are
distributed among n parties. The Protocol is based on Paillier
cryptosystem which is secure in the semi-honest model or
secure with high probability in the malicious adversary model.
The authors then advance the protocol to perform distributed
matrix multiplication.

Observation
• To define a multi-party computation protocol which al-

lows to efficiently compute a distributed matrix product
with data distributed between players, the problem can
be reduced to the computation of a dot product between
vectors U and V such that one player knows U and V
is divided between players.

Synopsis:
• As per the Paillier cryptosystem, homomorphic addition

operation is performed as follows:

D(E(m1, r1) · E(m2, r2)mod n2) = (m1 +m2)mod n
(8)

The homomorphic multiplication, with encrypted m1 and
m2 in cleartext can be performed as follows:

D(E(m1, r1)m2mod n2) = (m1m2)mod n (9)



TABLE I
COMPLEXITY ANALYSIS OF THE DIFFERENT HOMOMORPIC ENCRYPTION TECHNIQUES AS RELATED TO THEIR ALGEBRAIC OPERATIONS

Reference Scheme Allowed HE
Operations

Linear Algebra Operations Complexity (No. of HE
Operations)

[29] LWE-based Add, Mul Matrix Add, Matrix Mul, Mult by
Constant,

O(1)

[35] RLWE-based Add, Mul Vector Inner Product, Matrix Add,
Matrix Mul

O(1), O(m), O(m) and
O(1)

[40] Paillier Add, Mul Vector Inner Product, Vector Addi-
tion, Matrix Add, Matrix Mul

O(m), O(m), O(m2),
O(m2)

An encrypted plaintext raised to a constant k will decrypt
to the product of the plaintext and the constant,

D(E(m1, r1)kmod n2) = (km1)mod n (10)

• A linear dot product protocol with three parties:
Alice is interested in computing a one-dimension 3 dot-
product S = uT .v between her vector u and a vector
v whose coefficients are owned by different parties.

The other parties send their coefficients, encrypted to
Alice. Then she homomorphically multiplies each one
of these by her ui coefficients and masks the obtained
uivi by a random value ri.

Then the other parties can decrypt the resulting uivi +
ri with two unknowns ui and ri; they are not able to
recover vi.

Finally the parties enter a ring computation of the
overall sum before sending it to Alice. Then only,
Alice removes her random masks to recover the final
dot-product. Since at least two parties have added
u2v2 +u3v3, there is at least two unknowns for Alice,
but a single equation.

After several decryptions and re-encryptions, and re-
moval of the random values ri, S is exactly

∑
uivi

• This linear dot product protocol can be generalized to
n parties and requires O(n) communications and O(n)
encryption and decryption.

• To compute the matrix multiplication, using this dot-
product protocol, each party Pi owns two rows, Ai and
Bi, one of each n × n matrices A and B. In order to
compute the matrix product, it is required to parallelize
the dot-product protocol: each dot-product is cut into
blocks of 2 or 3 coefficients. At the end, each Pi learns
a row Ci of the matrix C = AB.

Pros:
• Matrix multiplication can be performed in O(n2) rather

than O(n3).
• Communication cost is linear.

Cons:
• With Paillier cryptosystem, there is no way to multiply

two encrypted vectors or matrices. Only one has to be
encrypted and the other has to stay as plaintext.

IV. COMPLEXITY STUDY OF THE DIFFERENT
ALGORITHMS

In this section we summarize the operations supported by
the different algorithms. Each algorithm supports the three
different levels of BLAS. The results are summarized in
Table I.

In addition to the analytic evaluation, we provide a quantita-
tive example that further highlights the practical complexities
of these algorithms when use for BLAS operations. For this
purpose, we use the BGV scheme of the HElib library and the
Intel PIN Tool [41] for runtime instrumentation. The BGV
variant in the HELib package is defined over polynomial
rings of the form = [X]/Φm(X) where m is a parameter
and Φm(X) is the m’th cyclotomic polynomial. The native
plaintext space is [X]/(Φm(X), pr) where r is a small value
and p defines the modulo-p polynomials. The vector size used
in this illustrative test case is a 64-integer entry vector, with
p = 4999, m = 32109 and r = 1 (for the Level 1 scenario, we
convert the matrix to a vector). Tests were performed on an
Intel Core i7-5820K Processor with 6-Cores, 3.3GHz, 15MB
Cache, with Hyper-Threading Technology machine. In all the
runs, we use a single-threaded version of the program. The
cycle numbers reported are gathered through instrumentation
using the Intel PIN Tool. The cycle count is the end-to-end
program run with all related system calls.

The key observations are (1) homomorphic encryption based
computation remains an expensive task - even for simple ma-
trix operations, and (2) creating the parameters and computing
objects to set up the execution environment with the desirable
level of security is the computationally intensive part of the
operation. This part occupies 85% of the total execution cycles.

V. CONCLUSION AND FUTURE WORK

In this work, we highlight the importance of signal pro-
cessing in the encrypted domain (SPED). We connect this
growing application domain to conventional BLAS kernels.
We then go through a full overview of key homomorphic
encryption algorithms that lend themselves to performing these
computations securely. Finally, we provide their time complex-
ities and a computational analysis of one of these algorithms.
In our future, we plan to select three representative signal
processing applications (end-to-end), highlight their core linear
algebra kernels, and how one can efficiently perform secure
computation on them.
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Fig. 1. BLAS Level 1 homomorphic encryption execution using the RLWE-based Brakerski-Gentry-Vaikuntanathan (BGV) scheme. The left side of the figure
describes the computational overhead using the number of cycles. As observed in the figure, the overhead for the encrypted operation is approximately 103

cycles. On the right side of the figure, we show the breakdown of number of cycles as they are used for different portions of the encrypted operation. For
“Environment Setup,” this includes tasks such as building modulus chain and the switching matrices.
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