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Abstract—As more and more edge devices connect to the cloud to
use its storage and compute capabilities, they bring in security and data
privacy concerns. Homomorphic Encryption (HE) is a promising solution
to maintain data privacy by enabling computations on the encrypted user
data in the cloud. While there has been a lot of work on accelerating HE
computation in the cloud, little attention has been paid to optimize the
en/decryption on the edge. Therefore, in this paper, we present RACE,
a custom-designed area- and energy-efficient SoC for en/decryption
of data for HE. Owing to similar operations in en/decryption, RACE
unifies the en/decryption datapath to save area. RACE efficiently exploits
techniques like memory reuse and data reordering to utilize minimal
amount of on-chip memory. We evaluate RACE using a complete RTL
design containing a RISC-V processor and our unified accelerator. Our
analysis shows that, for the end-to-end en/decryption, using RACE leads
to, on average, 48× to 39729× (for a wide range of security parameters)
more energy-efficient solution than purely using a processor.

I. INTRODUCTION

Over the last decade, Homomorphic Encryption (HE) has emerged
as one of the key techniques to perform privacy-preserving computa-
tions. Edge devices (having energy and area constraints) can therefore
leverage cloud services to compute on private user data using HE.
Figure 1 shows an example use case for HE-based computing where
a user captures a picture/video using an edge device, pre-processes
it, encrypts it, and then sends it to the cloud for further processing.
The cloud operates on the data in its encrypted form and sends the en-
crypted result back to the user, and only the user can decrypt the result.

Several recent works have focused on accelerating the HE
operations on the cloud through algorithmic optimizations for
CPU [1], [2], GPU [3], [4], and custom hardware accelerators [5]–[9].
All these works make an implicit assumption that the edge-side
operations, including encryption and decryption (en/decryption),
encoding and decoding (en/decoding), and error sampling are trivial
and do not need to be accelerated. However, these edge-side operations
are not trivial, and have high compute and memory requirements.
SEAL-Embedded is the first HE library targeted for embedded devices,
which employs several computational and algorithmic optimizations
to achieve memory efficient en/decoding and en/decryption on edge
devices [10]. They target Cheon, Kim, Kim and Song (CKKS) [11]
HE scheme as it operates on floating-point data, which enables
computing on the variety of data captured by the edge device sensors.

However, the memory efficient implementation of the library
has performance bottlenecks (e.g., inefficient modular arithmetic
implementation) and is still not practical. For example, if we
were to encrypt video captured by a QQVGA cameras operating
at a low resolution of 120 × 160 pixels using memory-efficient
SEAL-Embedded library (running at 1 GHz on a RISC-V core like
BlackParrot [12] for polynomial degree of N=4096 and three 30-bit
primes), we cannot encrypt even one frame per second (more details
in Section V). Typically surveillance cameras and mobile platforms
(forming the ‘Internet of Video Things’) have an average industry

Fig. 1: Steps taken to transfer encrypted video frames to the cloud.

frame rate of 15 and 30 frames per second [13]. One could use a more
powerful processor, but then the resulting power consumption would
be higher which would not be sustainable in a typical edge device.

The key bottleneck of the edge-side operations is the
en/decryption operation, where in the main bottleneck is the
Number Theoretic Transform (NTT) operation. Several prior
works have accelerated the NTT operation in the context of Post
Quantum Cryptography (PQC) [14]–[19]. However, the parameters
used by these works are much smaller (polynomial degree N<=210

and coefficient bit width logQ<=24) than the required parameters
for a practical HE application (N > 212 and logQ> 109). None
of these NTT accelerators focus on designing an area and energy-
efficient solution for en/decryption to support HE-based computing.
Su et al., proposed an FPGA [20] accelerator for en/decryption
targeting Brakerski-Gentry-Vaikuntanathan (BGV) HE scheme [21],
but it supports small security parameters (N=27). Similarly, Yoon
et al., also proposed an ASIC based en/decryption accelerator [22],
but it is also evaluated only for small security parameters (N=24).

In this work, we present RACE: a custom-designed area- and
energy-efficient RISC-V System-on-Chip (SoC) for en/decryption
of the data on the edge. Encryption and decryption perform
similar operations (polynomial addition and multiplication), and so
we propose a unified accelerator, where the encryption and decryption
operations share the datapath. To reduce SRAM area in RACE we
architect it such that it requires memory that is large enough to only
store two polynomials. This memory is reused over time to store inputs,
outputs, and intermediate values. We propose a novel data reordering
scheme for NTT so that RACE only needs single port (1RW) SRAM
banks, which further reduces area in contrast with prior works [14]–
[18], [23] that need dual port (1R1W) SRAM banks. We interface
our accelerator with BlackParrot [12] to design a complete SoC. We
provide an end-to-end evaluation of our SoC when performing the
en/decryption operation using the accelerator and the remaining op-
erations on the BlackParrot processor. We compare our SoC against a
BlackParrot only (BP only) system where all operations are performed
on the BlackParrot processor. For both designs we leverage the SEAL-
Embedded library. The main contributions of our work are as follows:

• We profile SEAL-Embedded based edge-side operations for the
CKKS scheme on BlackParrot, for different N and logQ pairs
to identify the performance bottlenecks.



• Based on the profiling results, we architect RACE, an area- and
energy-efficient SoC to accelerate the en/decryption operations.
We use a shared data path for the en/decryption operations, and
memory reuse and data reorder techniques to architect an efficient
accelerator design.

• We interface the accelerator with BlackParrot and evaluate the
performance and energy efficiency of RACE when performing
end-to-end en/decryption operations.
For the end-to-end encryption and decryption operation, RACE

decreases Energy Delay Product (EDP) by 38.67-75701.92× and
57.93-3756.25×, respectively, compared to the ‘BP only’ system.

II. PRELIMINARIES

A. The CKKS Scheme: En/Decryption Operations
The CKKS HE scheme can efficiently perform computations on

encrypted real numbers. The native plaintext data-type in CKKS
scheme is a vector of length N/2 where each element is chosen from
C, the field of complex numbers. The encoding operation takes as
input this N/2-dimensional vector and returns an integer polynomial
m(X). Encryption of the polynomial m(X) under the public key
pk generates a ciphertext ct by computing the following equations:

c0=µ·pk0+m+e0, (1)
c1=µ·pk1+e1 (2)

Here, µ is a uniformly sampled polynomial, and e0 and e1 are
two polynomials sampled from a discrete Gaussian noise sampler.
The coefficients in both the polynomials (c0,c1) are elements of
ZQ, where Q is typically on the order of thousands of bits to
account for the noise growth. Therefore, to compute on such large
operands efficiently, the CKKS scheme supports the use of Residue
Number System (RNS) (also known as the Chinese Remainder
Theorem (CRT) representation). Using this approach, each number
is represented modulo Q =

∏ℓ
i=1 qi, where each qi is a prime

number. We can represent x ∈ ZQ as a length-ℓ vector of scalars
[x]B = (x1,x2,...,xℓ), where xi ≡ x (mod qi). We refer to each
xi as a limb of x. The ciphertext is decrypted to obtain the original
message back using the following equation:

m=c0+c1·s (mod qℓ) (3)
Here s is the secret key. Using RNS, both en/decryption can be
performed with respect to a smaller modulus qi instead of a large
modulus Q.
Video Frame Encryption Example: Considering our example
of video frame encryption, using Quarter Quarter VGA (QQVGA)
frame resolution, the frame size is 120×160 pixels. If this frame
is in grey scale, the frame size will be 120×160×8=153,600 bits
= 19.2 KB. With N = 4096 and logq = 30 bits, we can encode
N/2×logq=2048×30= 61, 440 bits in a single ciphertext, which
implies that a single frame will be encoded and encrypted within
3 ciphertexts and will have a total size of 327 KB.
B. BlackParrot: RISC-V Multicore

BlackParrot is an agile open-source RISC-V multi-core processor
for accelerator SoCs [12]. It implements the RISC-V RV 64G
architecture and is designed as a scalable, heterogeneously tiled micro-
architecture with a configurable number of tiles. BlackParrot provides
a robust and scalable end-to-end framework for accelerator integration,
which simplifies interfacing both coherent and streaming accelerators,
and the offloading of parts of the user application from the processor
to the accelerator. This framework provides hardware implementation
of streaming and coherent accelerator tiles in SystemVerilog and

helps accelerator designers and system architects to evaluate their
accelerator related ideas and evaluate the end-to-end application time.

III. RELATED WORK

One of the key works in the area of accelerating edge-side
operations for HE is the Microsoft SEAL-embedded library [10],
which focuses on reducing the memory requirement for en/decoding
and en/decryption operations. It uses RNS partitioning, data type
compression, memory pooling and reuse to reduce the memory
consumption. However, this software-based implementation of HE
encryption is still slow and not efficient for real-time applications. As
mentioned earlier, for a video application with QQVGA resolution,
SEAL-embedded fails to encrypt even one frame per second.

There are few works focusing on accelerating en/decryption for
HE [20], [22]. Su et al. [20] present an FPGA-based accelerator, but it
is for the BGV HE scheme as against the CKKS scheme that we sup-
port. Although their accelerator can be extended to larger polynomial
degrees to support higher security levels, in its current form it only sup-
ports small parameters (N=128, logQ=27), which are impractical
for HE computation. The authors have left the support for larger pa-
rameters as part of the future work. Moreover, the accelerator is mainly
optimized for higher performance and throughput, and not for area/en-
ergy efficiency. Yoon et al. [22] present an ASIC-based en/decryption
accelerator for HE operations. The accelerator is again evaluated for
small N=16 only. It needs large buffers to store the in/outputs and
the pre-computed twiddle factors, increasing the memory area.

In our work, we can perform en/decryption for any practical
security parameters. We share the datapath, adopt memory reuse
and data reordering strategies, and compute all the twiddle factors
on-the-fly to enable efficient en/decryption operations.

IV. RACE SYSTEM DESIGN AND FUNCTIONALITY
In this section, we first discuss the dataflow for en/decryption and

then present the overall architecture of RACE, a complete SoC (see
Figure 2) that contains a unified accelerator to efficiently perform
en/decryption operations on the edge.

A. Dataflow for Encryption and Decryption

Figure 3(a) shows the encryption dataflow, which is described
by Equation (1) and (2). Both the equations perform polynomial
addition and multiplication operations to compute the ciphertext.
While polynomial addition is straight-forward, NTT is commonly
used to speedup polynomial multiplication. We split the operations
on (pk0,µ,m+ e0) to calculate c0 and operations on (pk1,µ,e1)
to calculate c1 into two ‘half-encryption’ operations. Thus, every
encryption operation calls the accelerator twice, once for c0
half-encryption and once for c1 half-encryption. Figure 3(b) shows
the dataflow for the decryption operation. The decryption operation
follows Equation (3) and accepts inputs in NTT format. At a high-
level, the half-encryption and decryption operations perform the same
underlying operations, just in a different order. Hence, we share the
datapath and control logic of the accelerator between the encryption
and decryption to lower the accelerator area (see Figure 3(c)).

B. RACE System View

RACE SoC consists of a single-core configuration of BlackParrot
and an en/decryption accelerator. We interface the en/decryption
accelerator with BlackParrot as a streaming accelerator because
it needs a large amount of input and output data transfers (tens of
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Fig. 2: System-level view of RACE, a RISC-V based SoC for accelerating encryption and decryption operation on the edge for supporting
homomorphic operations in the cloud.
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Fig. 3: (a) Encryption dataflow. (b) Decryption dataflow. (c) Unified
en/decryption dataflow. In the unified dataflow, encryption and
decryption share the datapath and the control logic.
KBs). We set up a hardware DMA logic to transfer all the input data
from the main memory to the accelerator tile. The required input
data includes pk0, pk1, e0, e1 and µ. Once the accelerator completes
en/decryption operation, it sends an interrupt to the BlackParrot
core to signal a completion of the operation. Then, the DMA logic
transfers the accelerator output data to the main memory that can
be read by BlackParrot for further processing.

C. Accelerator Microarchitecture
Figure 2 shows the detailed microarchitecture of our pipelined

accelerator. The accelerator consists of SRAM banks that store the
in/output and intermediate polynomials. The Butterfly Unit (BFU)
is pipelined and is designed to perform NTT, INTT, polynomial
addition and multiplication operations that are required by both
encryption and decryption operations (see Figure 3). The permutation
unit (PU) reorders (more details given later in this section) the output
generated by the BFU and writes it back into the SRAM banks. The
control unit (CU) generates activation signals for different datapaths
corresponding to the different operations.

1) BFU: A Butterfly operation (BF) is the building block of
NTT/INTT. An NTT/INTT operation consists of log2 N stages
(N−1 is the polynomial degree), and each stage contains N/2 BFs.

Given a polynomial a, a BF takes its two coefficients (ai,aj) as input
and computes (ai,aj)=(ai+ω ·aj (mod q), ai−ω ·aj (mod q))
(refer Algorithm 1 line 13 and 14). Here, ω is the twiddle factor. A
degree N−1 polynomial requires N/2 twiddle factors, where each
twiddle factor needs log(q) bits. To reduce the memory overhead
for storing pre-computed twiddle factors, our accelerator computes
them on-the-fly within BFU.

BFU is a fully-pipelined module with the throughput of 1 BF
per cycle. It contains a modular multiplier where modular reduction
operation is performed using a Barrett reduction [24] unit. BFU
also has an integer adder and subtractor unit that performs modular
reduction using conditional operator. The latency of the pipelined
modular multiplier can be tuned through the number of pipeline
stages. The multiplier lies on the critical path in the accelerator, and
we pipeline the multiplier to reduce the critical path and improve
the frequency of the accelerator. As power and area are the primary
design goals for embedded devices, all the above computations are
performed by sequentially leveraging the pipelined BFU.

2) SRAM Arrays: We use the SRAM arrays to store the in/output
and intermediate polynomials. We propose two key ideas: memory
reuse and memory reorder to minimize the SRAM size requirements.
Memory reuse: For efficient en/decryption computation, all the re-
quired polynomials (m, e0, e1, µ, pk0, pk1, c0, c1) should be stored in
the on-chip memory of the accelerator. However, a single polynomial
is usually large and requires large amount of memory. For N=214,
log(q)=30 we need 480 KB to store all the in/output polynomials. In
our memory reuse approach, we manage the en/decryption operations
such that at any point of time we need to store at most two polynomials,
which require 122 KB space. We divide the on-chip SRAM memory
into multiple banks. Each polynomial is stored across multiple banks
and those banks together form a group. We have two bank groups
i.e., BG0 and BG1 for the two polynomials. These bank groups are
used for storing the in/output and intermediate polynomials during
en/decryption operation. Figure 4(a) and (b) show how the two bank
groups are shared among the various polynomials during encryption
and decryption operation, respectively. For example, we perform an in-
place NTT/INTT operation that reads the data for polynomial µ from
BG0, operates on it, and writes the results back BG0. While computing
NTT on the polynomial µ, we load the next input polynomial pk1
into BG1 in parallel. We perform memory reuse during the modular
addition and multiplication operations as well. Both of these operations
read inputs from bank groups BG0 and BG1 and write the results

3



Algorithm 1: NTT swap4
Input: Polynomial a(x)∈Zq[x] in bit-reversed order
Output: NTT(a(x)) in normal order

1 m=2;
2 for (stage=0;stage<(logN−1);stage+=1) do
3 ω=1; ωm=ω2logN−1−stage

n ; upd cnt=1;
4 for (j=0;j<m∗2;j+=4) do
5 for (k=0;k<N;k+=m∗4) do
6 i0=[]; i1=[];
7 for (l=0;l<4;l+=1) do
8 switch l do
9 case 0 do idx=j+k ;

10 case 1 do idx=j+k+2 ;
11 case 2 do idx=j+k+m∗2 ;
12 case 3 do idx=j+k+m∗2+2 ;

13 a[idx]=a[idx]+a[idx+1]∗ω (mod q);
14 a[idx+1]=a[idx]−a[idx+1]∗ω (mod q);
15 i0.append(idx); i1.append(idx+1);
16 if upd cnt==N/(2stage+1) then
17 ω=ω∗ωm (mod q); upd cnt=1;
18 else upd cnt+=1 ;

19

(a[i0[0]],a[i1[0]],a[i0[1]],a[i1[1]],

a[i0[2]],a[i1[2]],a[i0[3]],a[i1[3]])=

(a[i0[0]],a[i0[1]],a[i0[2]],a[i0[3]],

a[i1[0]],a[i1[1]],a[i1[2]],a[i1[3]])

20 m= (m==N/4) ? 2 : (m∗2);
21 for (i=0;i<N;i+=1) do

/* Bit manipulation */
22 phy addr={i[logN−3:2],i[logN−1:logN−2],i[1:0]} ;
23 a out[i]=a[phy addr];
24 return a out;

Fig. 4: Memory reuse during (a) encryption and (b) decryption oper-
ations. Each BG can store only one polynomial. “Read/Operate/Write”
means the bank group is being accessed during the operations.

“Occupied” means the bank group stores intermediate results.
back to BG1 only. So we can reuse BG0 for the next operation
once the modular addition or multiplication operations are finished.
Thus, through memory reuse approach, we can perform en/decryption
efficiently using a small memory that stores only two polynomials.
Memory reorder: A naı̈ve implementation of the NTT algorithm
requires 2 read and 2 write port (2R2W) memory bank of size N
to achieve two reads and two writes per BF. 2R2W banks are almost
2× larger than 1 read and 1 write port (1R1W) bank. Therefore, just
by replacing a single 2R2W bank of size N with two 1R1W banks of
size N/2 (as long as there are no bank conflicts), we can save half of
the memory area. However, the distance between the two inputs of a
BF, (j−i), varies across NTT stages. NTT operation iterates through
all values from 1 to N/2, so there are bank conflicts in certain stages,
making this replacement impossible. Existing works reduce the
required memory ports from 2R2W to 1R1W by customizing the
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Fig. 5: NTT swap4 with N =32. The red colored numbers before
each pair of cells denote the order of BF operations. The consecutive
four BFs (2 rows) being reordered are denoted with the same color.
NTT algorithm. For example, to use 1R1W memory banks for an
NTT, Roy et al. [25] proposed a memory-efficient NTT algorithm. We
call their approach as NTT swap2 algorithm. This algorithm avoids
the bank conflicts (two 1R1W banks) by reordering the output of the
two consecutive BF operations. This is to ensure that the pair of inputs
needed by BF operation in the next stage resides in different banks.

While the use of 1R1W memory bank saves half the memory area,
it is still not efficient. We propose to replace the two 1R1W banks
of size N/2 with four 1 read/write port (1RW) banks of size N/4 to
reduce memory area even further. A 1RW bank is 2× smaller than a
1R1W bank. However, this results in newer bank conflicts that cannot
be resolved by the existing NTT swap2 algorithm. If the same bank
receives both read and write requests at the same time, we need to
have a write buffer that stores the write requests and waits until there
are no incoming reads to opportunistically write back the results. The
size of the write buffer depends on the number of cycles where the
bank is continuously read and written. If there are N/4 continuous
read and write accesses to the same bank in one particular stage, then
the write buffer needs to be the same size as the banks (N/4) to store
all the write requests that are overlapping with the read requests to
the same bank. To avoid the overhead of this large write buffers, we
propose a new NTT algorithm called NTT swap4 (refer Algorithm 1).

On top of NTT swap2 i.e., reordering the outputs of two BF
operations, NTT swap4 further reorders the output of four consecutive
BFs (Figure 5). This is to make sure that not only the two inputs of all
BF operations are stored in different banks (NTT swap2), but also the
inputs of consecutive BFs are stored in different banks (NTT swap4).
In this case, the same bank is not continuously accessed and the write
buffer can write back the results immediately in the next cycle. Hence,
the write buffer can be as small as one element wide (logq), saving
further area. Figure 5 shows an example of NTT swap4 scheme for
N=32. The numbers (in red) before each pair of cells denote the or-
der of BF operations. For example, in stage 0, the first four BFs access
the following pairs: (a0,a1),(a2,a3),(a4,a5),(a6,a7). However, stage
1 expects elements in the order of (a0,a2),(a4,a6),(a1,a3),(a5,a7).
So we reorder the outputs of stage 0 to the order expected by stage
1 to make sure that the consecutive BFs in stage 1 do not access the
same banks for reads and writes (refer Algorithm 1 line 19). We use
a PU to perform this reordering.

3) Permutation Unit: The PU consists of a reordering logic and
a small register array to store 8 pairs of BF outputs. Reordering logic
starts by writing the two outputs of a BF operation along with their ad-
dresses sequentially to the register array in each cycle. After there are
eight elements in the register array i.e., four pair of BFU outputs, the
reordering logic will first send out the elements stored in even registers
and then the elements in odd registers (see memory reorder example
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in Section IV-C2). This reordering logic works for both NTT and
INTT operations. As shown in Figure 2, depending upon the mode
signal, the PU will be active only during the NTT/INTT computations.

4) Control Unit: The CU consists of two components – the
computation controller and the I/O controller. The computation
controller is an FSM that determines the BFU and PU mode signals
depending upon the current operation (NTT/INTT, modular addition
and multiplications). It also generates the read/write addresses and
enable signals for SRAM accesses. During NTT/INTT operation, the
computation controller is also responsible for stalling the BFU pipeline
and configuring it to compute the twiddle factors on-the-fly. The I/O
controller selects the required set of BFU operations depending on the
CPU request type received by the accelerator (encryption or decryp-
tion). In addition, it also sets up the DMA unit for the in/output data
transfer to/from SRAM arrays based on the current en/decryption step.

V. EVALUATION

A. Methodology
For our analysis, we run all the edge-side operations from the

SEAL-Embedded library on the ‘BP only’ system and RACE in
bare-metal mode. In the ‘BP only’ system, we perform all operations
on the BlackParrot processor. In RACE, we perform the en/decryption
operation using the accelerator and the remaining operations on the
BlackParrot processor. We modified SEAL-Embedded library to
execute en/decryption operations on the accelerator in RACE. For
both ‘BP only’ and RACE, we use BlackParrot SoC with a single core
configuration (32 KB each of Icache and Dcache) running at 1 GHz.
Both ‘BP only’ and RACE are implemented in SystemVerilog and
simulated using VCS. The hardware implementation is cycle-accurate
and captures the nuances of data movement between all parts
of the systems. For power, performance and area evaluation, we
use GlobalFoundries 12 nm technology. We synthesize the logic
components in both ‘BP only’ and RACE using Synopsys Design
Compiler, and use memory compiler for designing the SRAM arrays.

B. Results
Performance: Figure 6 (a) shows the initial setup, encoding, error
sampling, DMA, and encryption latency (in clock cycles) for the ‘BP
only’ system and RACE for different security parameters (N , logQ).
Note that the Y-axis uses a log scale. Similarly, Figure 6 (b) shows
the latency breakdown for the initial setup, decode, decrypt and DMA
operations. For the ‘BP only’ system, the en/decryption operations
take the longest time because they need multiple polynomial multi-
plications, where the runtime is dominated by NTT/INTT operations.
RACE reduces the NTT/INTT execution time by 78.4× for the
smallest N (1024) and 121.8× for the largest N (16384). As a result,
the encryption time decreases by 62.56-515.45× (80.63-669.56×
w/o considering the DMA overhead) and the decryption time decreases
by 126.51-160.9× (158.14-201.12× again w/o considering the
DMA overhead), which in turn decreases the end-to-end latency by
7.5-312.1× and 9.3-69.5×, respectively. The end-to-end performance
improvement is lower than that of en/decryption alone because all the
initial setup, encoding/decoding and error sampling operations take
non-trivial amount of time and are performed in the software.

In Figure 6 (a) and (b), we observe that we get a higher performance
improvement for the larger N values. This is because for larger N
values we need to perform more BF operations within an NTT and
INTT, and we accelerate these very BF operations using hardware.
Moreover, as logQ increases, the number of 30-bit co-primes that
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per second (FPS) for mid-band 5G, camera, SEAL-Embedded based
encryption, and RACE for different N and log(Q) values.

we need also increases, which in turn increases the number of times
we need to call the encryption and decryption operations (once per
co-prime). It is worth noting that for RACE we need to perform DMA
operations, but due to the high computational requirements of the
en/decryption operations, the DMA overhead is negligible (<20%).
Power/Energy: The total power consumption for an end-to-end
en/decryption in the ‘BP only’ system is 27.19 mW, out of which
the SRAM power consumption is 41.49% = 11.4 mW and the
digital logic consumes the rest of the power. Overall, the power
consumption of RACE is about 25-28% (for a range of security
parameters) higher than the ‘BP only’ system for both end-to-end
encryption and decryption procedures. The increase in the power
consumption is due to 41.92-43.55% power increase in the digital
logic and 3.36−7.81% power increase in the SRAM.

Table I shows the energy consumed in the end-to-end encryption
and decryption procedures for different (N , logQ) values when
using ‘BP only’ and RACE. Overall, RACE consumes 5.07-242.5×
lower energy when running an end-to-end encryption procedure and
6.2-54.02× lower energy when running an end-to-end decryption
procedure as compared to the ‘BP only’ system. This is because
the performance of RACE is up to 312.1× and 69.5× higher for
the end-to-end encryption and decryption procedures, but its power
overhead is very small. As discussed earlier, RACE speedup is higher
for larger security parameters, but the power consumption increases
by only 3% for the largest N value compared to the smallest one.
Hence, as the security parameters (N , logQ) grow, the end-to-end
energy saving per en/decryption increases.
Energy Efficiency: We use Energy Delay Product (EDP) metric
to compare the energy efficiency of the ‘BP only’ system and RACE
(see Table I). Overall, RACE has 38.67-75701.92× lower EDP when
running an end-to-end encryption procedure and 57.93-3756.25×
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TABLE I: End-to-end performance, power, area and EDP comparison for the ‘BP only’ system and RACE.

‘BP only’ (en/decryption) RACE (en/decryption)(N , logQ) Latency (ms) Energy (mJ) EDP (mJ.ms) Area (µ2) Latency (ms) Energy (mJ) EDP (mJ.ms) Area (µ2)
(1024, 27) 65.57/13.8 1.78/0.06 116.91/5.18 135880.17 8.61/1.48 0.35/6.21 3.02/0.09 156901.15
(2048, 30) 143.26/30.09 3.90/0.10 558.10/24.62 135880.17 18.04/3.12 0.58/7.66 10.16/0.33 163856.05
(4096, 90) 871.48/182.16 23.70/0.26 20652.58/902.29 135880.17 42.94/7.6 1.47/19.03 63.17/1.98 175639.99
(8192, 130) 3716.09/774.22 101.05/0.65 375516.07/16299.99 135880.17 110.28/19.08 3.78/32.18 416.93/12.48 199668.39
16384, 390) 102665.07/3576.19 2791.76/1.79 2.86×108/347774.18 135880.17 328.94/51.44 11.51/54.02 3786.11/92.59 250913.93

lower EDP when running an end-to-end decryption procedure as
compared to the ‘BP only’ system.
Area: Overall, RACE area is 15% (smallest N) to 84% (largest N)
larger than the ‘BP only’ system area. SRAMs occupy (75%) of the
area in the ‘BP only’ system, and there is 11%-100% increase in the
SRAM area in RACE as compared to the ‘BP only’ system. However,
note that we reduce the SRAM requirement from 480 KB to 120 KB
for the largest N value by employing various techniques discussed
in section IV-C2.
Video Application Evaluation: For the video application discussed
earlier, Figure 7 shows the maximum frames per second (FPS) that
both the ‘BP only’ system and RACE can sustain for different
(N , logQ) values when performing an end-to-end encryption. The
encrypted frames are shipped to the cloud using a mid-band 5G
network, which offers a balance of speed, capacity, and coverage [26].
As shown in Figure 7a, in the regions with maximum bandwidth, mid-
band 5G network can transfer up to 111 (QQVGA) and 28 (QVGA)
frames per second and in the regions with minimum bandwidth, it can
only transfer 12 (QQVGA) and 3 (QVGA) frames per second. The
‘BP only’ system is capable of encrypting up to 3 QQVGA FPS for
N values smaller than 2048 (refer Figure 7). However, as we increase
N to 4096 or larger values, it cannot encrypt even a single frame per
second. On the other hand, for QQVGA RACE encrypts ∼20 FPS for
small values of N and 10 FPS for the largest N value (16384). For
QVGA resolution, the ‘BP only’ system cannot encrypt even one FPS
for the smallest N value (1024). However, RACE can encrypt 6 and 3
FPS for the smallest and largest N values, respectively. While RACE
can support higher FPS than the ‘BP only’, there is still some head-
room in both minimum 5G bandwidth and maximum 5G bandwidth
cases. Therefore, as part of the future work, we plan to accelerate
the en/decoding and the error sampling operations to fully utilize the
frame transfer rate that can be sustained by the mid-band 5G network.

VI. CONCLUSION

In this work, we present RACE, a RISC-V based SoC for
en/decryption acceleration on the edge to support HE operations in
the cloud. RACE implements several optimizations that enable high
performance, and area- and energy-efficient end-to-end en/decryption
operations. Our analyses show that compared to the ‘BP only’ system,
RACE has higher performance and lower energy consumption. As
a result, overall RACE is more energy efficient than the ‘BP only’
system, and has 38.67-75701.92× lower EDP when running an
end-to-end encryption procedure and 57.93-3756.25× lower EDP
when running an end-to-end decryption procedure.
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