BOSTON

UNIVERSITY

rashmi23@bu.edu

Affordable and Practical Acceleration of CKKS-based Fully Homomorphic Encryption
Rashmi Agrawal, Leo de Castro, Rabia Yazicigil,
Anantha Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, Ajay Joshi

Fully Homomorphic Encryption (FHE)

Memory-Aware Design (MAD) Techniques

FAB: FPGA-based Accelerator

e FHE enables computation over encrypted data.

Outsourcing the Computation of f(z) = (z + a)*

[z]= Encrypt(z) @

[w]= PtAdd([z],)
s s

ra—— ®
[4] ! [4] = Mt ([uw][w])
y = Decrypt([y])

FHE Applications

e Medical, Financial, Supply chain, Marketing, etc.
e Machine learning: Logistic regression training

T Vector Inner Vector Inner Frained
Dataset Product Update Product Model
s 3 >« « . —p 1
Sigmoid Sigmoid
Function Function
W 30 iterations
Plaintext Circuit
‘ Encrypted Circuit
[[Training [[inner [[inner [[Trained
Dataset]] || Product]] Update Product]] Model]]
—_— + fie = o o —od { ~ —

PolyEval

PolyEval
|;':d:'.'.c]: \‘

3 iterations + Bootstrapping

10 iterations
e Problem: Bootstrapping is the major bottleneck.

Bootstrapping

SimFHE: Custom Simulator

e SimFHE:
o A python-based architectural simulator for
modeling CKKS operations at subroutine level.
o Set scheme parameters.
o Set architecture parameters.
o Keeps track of compute operations as well as
DRAM transfers for a given cache size.
e Study compute & memory trade-off.
e Explore various optimizations and select
parameters to optimize throughput.

Analysis using SimFHE

e Arithmetic intensity analysis for CKKS operations
and an end-to-end application.
o <1 Op/byte

Primitive Operations in CKKS Scheme
1.00

>
= 0.75
[72]
c
2 0.50
£ ;
&
5 0.25
S
£ o0
‘T .y > N N \@ @ @
< \?’b & R O é\) O\"b Q’b O\"b
< < ¥ &
Bootstrapping Steps
1.00
>
=
(2] 0.75
c
o
—
=
0.50
2
o
o
g 0.25
-
=
<
0.00
CoeffToSlot PolyEval SlotToCoeff
Logistic Regression Training Steps
1.00
>
=
(72} 0.75
c
7]
—
=
2 0.50
—
o
_g 0.25
=
S
<

0.00

InnerProduct

PolyEval LR Iteration Bootstrapping

e Bootstrapping has low arithmetic intensity.
e Limited memory bandwidth is the bottleneck.

e Memory access pattern optimization:
o Regorganize low-level memory access pattern
for faster data access.

Limb index Slot index

|31|3o[29|2s]27]26|25|24|23|;z|21|2o|19|1s|171|1e{15{14|13|12|11|1o| ofsf7]e]s]a]3]2]1]0]

(a) Baseline address mapping

Lower-order bits Higher-order bits Higher-order bits Lower-order bits
for limb index for slot index for limb index for slot index

|31|30|29‘28]27]26|25|24|23|22|21|20|19|1B|17|;6‘15‘14‘13|12|11|10| ofsf7]e]s]a]3]2]1]0]

(b) Optimized address mapping

Byte index Column Bank Bank Rank Row
’ D within a row Index Index D group D Index I:I Index

e FAB - an FPGA-based accelerator for
bootstrappable FHE workloads.
o First ever bootstrapping implementation on
FPGA.
m Secure and practical parameter set
o Balanced FPGA design.
m Not memory-bound.
o Only 256 functional units operating at 300MHz
o High data rates from/to main memory at
450MHz.
o Effective utilization of limited on-chip memory.
m Modified datapath for basic FHE operations
like KeySwitch.
m Smart Operation scheduling.

Limb-wise Slot-wise Full

access access Switch
Baseline 2.3 ms 9.2 ms 11.5ms
Optimized 2.5 ms 22 ms 4.7 ms

FAB: Overall Architecture

e Hierarchical caching optimizations:
o Compute as much as possible to maximize data
reuse.
o Re-order operations to maximize cache
utilization.

Cache Optimizations

I DRAM Reads
EE# Switching Key Reads

= 150 [DRAM Writes
£ 125

g

£ 100

<

e 75

% 50

[

Base O(1)-limb B-limb a-limb Limb
line Cache Cache Cache

N
@

=)

Re-order

e Algorithmic optimizations:
o Double-hoisting to reduce orientation switch.
o Improve arithmetic intensity of low level
operations.

Algorithmic Optimizations

I B DRAM Reads

Bl Switching Key Reads
Memory-Optimized = ModDown

-
)
=]

B Modular Multiplications
B Modular Additions

ModDown Key
Hoisting Compression

DRAM Transfers (in GB)

and Operations (in GOP)
— [=2] =<} 8
(=] o o o

[N)
=]

=3

[0 DRAM Writes
Baseline Merge

e Four components:
o Host CPU offloads RTL design to the FPGA.
o RTL design packaged as kernel code.
o 8GB HBM2 memory stacks.
o 100G Ethernet CMAC subsystem.

MITCSAIL

Cloud Server

Host CPU (X86)
(Host Code)

AXI14-lite
FPGA

CMAC
Subsystem FAB

256] —|
CMAC | G
Auto- HBM2
Mod Munm.u| Mod Add“_m Mod Sub o E (Stack 0)
> NTT 'URAM 'BRAM .
Adapter FIFO Add Control Logic «>
<_ Generation| |Generation| |Generation .
RAM||BRAM || BRAM ((BRAM E (stack 1
Bank ¢q Bank

Misc.
Bank R

Rx URAM ||| URAM
Adapter Bank ¢ ||[Bank ¢1

100G Other
Ethernet Switch FPGAs

FAB: Evaluation

Key Observations

e Designed in Verilog and implemented on Xilinx
Alveo U280 deployed in cloud environment.
e Basic FHE operations’ performance:

e 8.2x improvement in bootstrapping throughput.

Bootstrapping Throughput Comparison

500

400

)
= 300
o
£
[=)) 200
=
o
S 100
£
[
0
Jung etal. Bossuatetal. Our Work
(GPU) (Optimized
CPU)

e 3.2x improvement in arithmetic intensity.

Optimized Logistic Regression Training Steps
25

2.0
15
1.0

0.5

Arithmetic Intensity

0.0

InnerProduct

PolyEval LR Iteration Bootstrapping

e Memory bandwidth is still a bottleneck.

e CPU/GPU solutions are limited by main memory
bandwidth.

e Existing ASIC proposals are too expensive:
o Need large on-chip memory and register file.
o Need 12nm/7nm technology nodes.

FAB GPU Speedup
(Time)
Add 0.04 ms 0.16 ms | 3.85x
Mult 1.71 ms 296 ms | 1.73x
Rescale | 0.19 ms 0.49ms | 2.62x
Rotate 1.57 ms 255ms | 1.62x
e Bootstrapping performance:

Time Speedup Speedup

(micros) (Time) (Cycles)
CPU 101.78 213x 2485x
GPU 0.740 1.55x 6.35x
FAB 0.477 - -

e Logistic regression model training with 8 FPGAs:
Time Speedup Speedup
(sec) (Time) (Cycles)
CPU 37.05 456x 5318x
GPU 0.775 9.5x 39x
FAB-1 0.103 1.3x 1.3x
FAB-2 0.081 - -
Conclusion

e Affordable and practical FHE acceleration

solution.

o MAD techniques provide

m Optimizations feasible

with small cache sizes,
agnostic of platforms.

o FAB provides
m Practical performance

using FPGA at a fraction of

ASIC cost.

©

