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Fully Homomorphic Encryption (FHE)

Memory-Aware Design (MAD) Techniques

FAB: FPGA-based Accelerator

e FHE enables computation over encrypted data.

Outsourcing the Computation of f(z) = (z + a)*

[z]= Encrypt(z) @

[w]= PtAdd([z], )
s s

ra—— ®
[4] ! [4] = Mt ([uw][w])
y = Decrypt([y])

FHE Applications

e Medical, Financial, Supply chain, Marketing, etc.
e Machine learning: Logistic regression training
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e Problem: Bootstrapping is the major bottleneck.

Bootstrapping

SimFHE: Custom Simulator

e SimFHE:
o A python-based architectural simulator for
modeling CKKS operations at subroutine level.
o Set scheme parameters.
o Set architecture parameters.
o Keeps track of compute operations as well as
DRAM transfers for a given cache size.
e Study compute & memory trade-off.
e Explore various optimizations and select
parameters to optimize throughput.

Analysis using SimFHE

e Arithmetic intensity analysis for CKKS operations
and an end-to-end application.
o <1 Op/byte

Primitive Operations in CKKS Scheme
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e Bootstrapping has low arithmetic intensity.
e Limited memory bandwidth is the bottleneck.

e Memory access pattern optimization:
o Regorganize low-level memory access pattern
for faster data access.
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(b) Optimized address mapping
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e FAB - an FPGA-based accelerator for
bootstrappable FHE workloads.
o First ever bootstrapping implementation on
FPGA.
m Secure and practical parameter set
o Balanced FPGA design.
m Not memory-bound.
o Only 256 functional units operating at 300MHz
o High data rates from/to main memory at
450MHz.
o Effective utilization of limited on-chip memory.
m Modified datapath for basic FHE operations
like KeySwitch.
m Smart Operation scheduling.

Limb-wise Slot-wise Full

access access Switch
Baseline 2.3 ms 9.2 ms 11.5ms
Optimized 2.5 ms 22 ms 4.7 ms

FAB: Overall Architecture

e Hierarchical caching optimizations:
o Compute as much as possible to maximize data
reuse.
o Re-order operations to maximize cache
utilization.

Cache Optimizations
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Re-order

e Algorithmic optimizations:
o Double-hoisting to reduce orientation switch.
o Improve arithmetic intensity of low level
operations.

Algorithmic Optimizations

I B DRAM Reads

Bl Switching Key Reads
Memory-Optimized = ModDown

-
)
=]

B Modular Multiplications
B Modular Additions

ModDown Key
Hoisting Compression

DRAM Transfers (in GB)

and Operations (in GOP)
— [=2] =<} 8
(=] o o o

[N)
=]

=3

[0 DRAM Writes
Baseline Merge

e Four components:
o Host CPU offloads RTL design to the FPGA.
o RTL design packaged as kernel code.
o 8GB HBM2 memory stacks.
o 100G Ethernet CMAC subsystem.
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FAB: Evaluation

Key Observations

e Designed in Verilog and implemented on Xilinx
Alveo U280 deployed in cloud environment.
e Basic FHE operations’ performance:

e 8.2x improvement in bootstrapping throughput.

Bootstrapping Throughput Comparison
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e 3.2x improvement in arithmetic intensity.

Optimized Logistic Regression Training Steps
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e Memory bandwidth is still a bottleneck.

e CPU/GPU solutions are limited by main memory
bandwidth.

e Existing ASIC proposals are too expensive:
o Need large on-chip memory and register file.
o Need 12nm/7nm technology nodes.

FAB GPU Speedup
(Time)
Add 0.04 ms 0.16 ms | 3.85x
Mult 1.71 ms 296 ms | 1.73x
Rescale | 0.19 ms 0.49ms | 2.62x
Rotate 1.57 ms 255ms | 1.62x
e Bootstrapping performance:

Time Speedup Speedup

(micros) (Time) (Cycles)
CPU 101.78 213x 2485x
GPU 0.740 1.55x 6.35x
FAB 0.477 - -

e Logistic regression model training with 8 FPGAs:
Time Speedup Speedup
(sec) (Time) (Cycles)
CPU 37.05 456x 5318x
GPU 0.775 9.5x 39x
FAB-1 0.103 1.3x 1.3x
FAB-2 0.081 - -
Conclusion

e Affordable and practical FHE acceleration

solution.

o MAD techniques provide

m Optimizations feasible

with small cache sizes,
agnostic of platforms.

o FAB provides
m Practical performance

using FPGA at a fraction of

ASIC cost.
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