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NIST’s Standardization Steps

* Round-1 (Jan 2017 — Dec 2018)

Evaluating 64 Post-quantum cryptographic (PQC)
schemes to bring up a standard

21 lattice-based schemes, 18 code-based
schemes, some multivariate and hash-based

Round-2 (Jan 2019 — Jul 2020)

26 candidate submissions

12 lattice-based schemes, 8 code-based
schemes, some multivariate and hash-based

Round-3 (Ongoing)
/ candidate submissions

5 lattice-based schemes, 1 code-based scheme,
1 multivariate-based

Why lattice-based cryptography?

Exponentially hard

Quantum-resistant

Worst-case hardness equals average-case
hardness

Simple arithmetic operations on integers and
efficient implementation

Allowing building of advanced schemes beyond
public-key encryption

Enabler of surprising capabilities like homomorphic
encryption

Lattice and Learning with Error
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A Post-Quantum Secure Gaussian
Noise Sampler

Rashmi Agrawal, Lake Bu, and Michel A. Kinsy

Gaussian Noise Sampler

Heart of lattice-based schemes
® Critical to security
Gaussian distribution essential to security reduction
® Bounded-distance decoding problem reduces to CVP and SVP
Generating discrete Gaussian samples with high precision
® High-precision floating-point arithmetic required
Efficient, constant-time implementation
® Optimal performance and security trade-offs
® Resistance to side-channel attacks
Existing works focus on hardware acceleration of compute functions
® Ignoring the critical Gaussian noise sampler

Key Contributions

Highly-optimized FPGA-based implementation over a Gaussian
probability distribution

® Box-Muller, Rejection, and Ziggurat sampling
Generic design implementation

® Easy plug-in to current or future cryptosystems
High-precision and security

® Max-log distance along with statistical distance
Recommendation

® Evaluation of hardware resource utilization, sampling efficiency,

and throughput to suggest best sampling algorithm

Gaussian Distribution

Probability distribution
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Statistical distance
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Algorithm 2 Modified Box-Muller Sampling Algorithm for
Hardware Implementation

Input: o
Output: =z, y

9: compute xr = g X ulgpor
¢ ‘compute §J = 0 X @l egore X Wstore
. return x, y

I I N

. Precompute:
choose 11 + R =R N[0, 1] uniformly at random
choose uy + R = RN [0, 1] uniformly at random
if 21 # 0 then

compute ulgstore = vV—21In 1y

compute u2 4o, = €OS (2Tus)

compute u3store = sin (2mu2)
end if
Repeat
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Ziggurat Sampling

Algorithm 4 Ziggurat Sampling Algorithm

Input: o, core, n, =
Output: =
Repeat
choose j + Z = 7Z N [0, n] uniformly at random
choose u <+~ R =R N[0, 1] uniformly at random
compute z = u * x;
if j = O then
return z from tail
else if » < core; then
return z
else
perform rejection sampling on =

end if

Algorithm 5 Modified Ziggurat Sampling Algorithm for Hard-
ware Implementation
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Input: o, core, n, x
Output: =
Repeat
choose j «+— Z = Z N [1,n| uniformly at random
choose u + R =R N[0, 1] uniformly at random
compute z = u *
if = < core; then
return j
else
reject j
end if
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Ziggurat Schematic

64-bits multiplier, comparator 1

Results

o = 3.33, T = 9, and sampling precision of 64-bits

Hardware cost

Box-Muller 146
Rejection 89
Ziggurat 114

Hardware cost comparison

16-bits 1528 12
64-bits 717 6
32-bits 785 0
64-bits 143 1.5

Box-Muller[2]
Box-Muller [Our work]

Virtex-4
Virtex-4
Spartan-6
Spartan-6

Ziggurat[1]
Ziggurat[Our work]

Latency, Efficiency, and Throughput

0.61n
7.30n 15
3.13n 90

Box-Muller
Rejection
Ziggurat

Latency and Throughput comparison

60.3

Ziggurat [Our work] 114.1
Box-Muller [2] 233

270.9

Ziggurat [1]

Box-Muller [Our work]

Recommendations

Lot of
samples at
high rate

Box-Muller  Highest Highest Highest

Few samples
at low rate

Lot of
samples at
optimal rate

Rejection Lowest Lowest Lowest Yes

Ziggurat Optimal Optimal Optimal Yes/No
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