BOSTON

UNIVERSITY

Quantum Supremacy

HTTPS

Digitally signed PDFs
Homomorphic
Encryption

Secure IMs: Signal, FB
Messenger, Telegram,
etc.

IBM 53 qubits

RSA-1024, -2048, -4096
Elliptic Curve Crypto (ECC) -256, -521
Diffie-Hellman
ECC Diffie-Hellman
AES-128, -192

NIST’s Standardization Steps

* Round-1 (Jan 2017 — Dec 2018)

Evaluating 64 Post-quantum cryptographic (PQC)
schemes to bring up a standard

21 lattice-based schemes, 18 code-based
schemes, some multivariate and hash-based

Round-2 (Jan 2019 — Jul 2020)

26 candidate submissions

12 lattice-based schemes, 8 code-based
schemes, some multivariate and hash-based

Round-3 (Ongoing)
/ candidate submissions

5 lattice-based schemes, 1 code-based scheme,
1 multivariate-based

Why lattice-based cryptography?

Exponentially hard

Quantum-resistant

Worst-case hardness equals average-case
hardness

Simple arithmetic operations on integers and
efficient implementation

Allowing building of advanced schemes beyond
public-key encryption

Enabler of surprising capabilities like homomorphic
encryption

Lattice and Learning with Error

‘2‘13‘7‘3‘- - -
\4\7\9\1\ 2]
6 [14]5 |11] [s -

|5 [11]13] 2| [s4

(281 +13s2 + 7s3 + 3s4) + e1 =13 (mod Q)
(4s1 + 7s2 +9s3 + 1s4) + e2 =12 (mod q)
(6s1 + 14s2 + 5s3 + 11s4) + e3 = 3 (mod Q)
(581 + 11s2 + 13s3 + 2s4) + e4 = 9 (mod Q)

A Post-Quantum Secure Gaussian
Noise Sampler

Rashmi Agrawal, Lake Bu, and Michel A. Kinsy

Gaussian Noise Sampler

Heart of lattice-based schemes
® Critical to security
Gaussian distribution essential to security reduction
® Bounded-distance decoding problem reduces to CVP and SVP
Generating discrete Gaussian samples with high precision
® High-precision floating-point arithmetic required
Efficient, constant-time implementation
® Optimal performance and security trade-offs
® Resistance to side-channel attacks
Existing works focus on hardware acceleration of compute functions
® Ignoring the critical Gaussian noise sampler

Key Contributions

Highly-optimized FPGA-based implementation over a Gaussian
probability distribution

® Box-Muller, Rejection, and Ziggurat sampling
Generic design implementation

® Easy plug-in to current or future cryptosystems
High-precision and security

® Max-log distance along with statistical distance
Recommendation

® Evaluation of hardware resource utilization, sampling efficiency,

and throughput to suggest best sampling algorithm

Gaussian Distribution

Probability distribution

O —(x—c)2/2cr2

pc G(x) - 27_[
¢ Standard deV|ation 50

° - 1
Normalizing factor — T
Tail-cut parameter

® 7~ /A 2log,?2

Statistical distance
° A(Ez,m Dz,a) = sum|p(x) — p(x)| < 274
Max-log distance
® Ayi(Dz4,Dz4) = max|inp(x) — Inp(x)| < 274/2

Algorithm 2 Modified Box-Muller Sampling Algorithm for
Hardware Implementation

Input: o
Output: =z, y

9: compute xr = g X ulgpor
¢ ‘compute §J = 0 X @l egore X Wstore
. return x, y

I I N

. Precompute:
choose 11 + R =R N[0, 1] uniformly at random
choose uy + R = RN [0, 1] uniformly at random
if 21 # 0 then

compute ulgstore = vV—21In 1y

compute u2 4o, = €OS (2Tus)

compute u3store = sin (2mu2)
end if
Repeat

e X 'U'Qsto-re

Random Bit
| | Generator }_K-’ e

i
___,Lp{x} |

77.5
81.2
84.7
89.8
91.3
94.8
96.9

Core Area
Estimation

Ziggurat Sampling

Algorithm 4 Ziggurat Sampling Algorithm

Input: o, core, n, =
Output: =
Repeat
choose j + Z = 7Z N [0, n] uniformly at random
choose u <+~ R =R N[0, 1] uniformly at random
compute z = u * x;
if j = O then
return z from tail
else if » < core; then
return z
else
perform rejection sampling on =

end if

Algorithm 5 Modified Ziggurat Sampling Algorithm for Hard-
ware Implementation

2o o B Oy bl Wy

—

Input: o, core, n, x
Output: =
Repeat
choose j «+— Z = Z N [1,n| uniformly at random
choose u + R =R N[0, 1] uniformly at random
compute z = u *
if = < core; then
return j
else
reject j
end if

B el B M ol W I =

Precompute

° BRAM core(j)

x and core area Pl

Random bit generator
® jinrange [1,n], n = 64 _{
u in range [0,1] Random E'-t|J BRAM

J Generator | {x store)
Storage cost - | it[jj‘

® 4096-bits per BRAM | [
Ziggurat Schematic

64-bits multiplier, comparator 1

Results

o = 3.33, T = 9, and sampling precision of 64-bits

Hardware cost

Box-Muller 146
Rejection 89
Ziggurat 114

Hardware cost comparison

16-bits 1528 12
64-bits 717 6
32-bits 785 0
64-bits 143 1.5

Box-Muller[2]
Box-Muller [Our work]

Virtex-4
Virtex-4
Spartan-6
Spartan-6

Ziggurat[1]
Ziggurat[Our work]

Latency, Efficiency, and Throughput

0.61n
7.30n 15
3.13n 90

Box-Muller
Rejection
Ziggurat

Latency and Throughput comparison

60.3

Ziggurat [Our work] 114.1
Box-Muller [2] 233

270.9

Ziggurat [1]

Box-Muller [Our work]

Recommendations

Lot of
samples at
high rate

Box-Muller Highest Highest Highest

Few samples
at low rate

Lot of
samples at
optimal rate

Rejection Lowest Lowest Lowest Yes

Ziggurat Optimal Optimal Optimal Yes/No

References

1] Howe et al., On practical discrete Gaussian noise samplers
for lattice- based cryptography, IEEE ToC 2016

2] Lee et al., A hardware Gaussian noise generator using the
Box-Muller method and its error analysis, IEEE ToC 2006

	A Post-Quantum Secure Gaussian Noise Sampler

