
Adaptive Approximate Cache Architecture
Rashmi Agrawal, Michel A. Kinsy

Department of Electrical & Computer Engineering, Boston University

Summary

Introduction

Architecture Overview

• Self-Organization:
 Dynamic cache line sizes and Dynamic

associativity setting
• Hybrid cache/memory structures
• Multi-namespace memory
• Buffer queue structure

Self-Organized Cache Architecture Details

Evaluation Methodology

Performance Analysis – Varying Associativity

Performance Analysis – Varying Cache Size

Key Takeways

Performance Analysis – Varying Cache Line Size

Conclusion

References

For execution context adaptation, an architecture
requires:
•The ability to modify hardware parameters
dynamically;
•The ability to monitor performance as a function of
program execution and collect statistics.
In this work, we show a low-hardware overhead

design for an adaptive cache architecture.

Problem Statement
With the advent of technologies like mobile and cloud
computing, context-aware computing, internet-of-things,
autonomous car, computing systems must be redesigned
to meet the performance requirements of these emerging
applications.
Furthermore, the current multicore or manycore computer
systems present application programmers with a great
deal of challenges due to their ever-increasing complexity
and heterogeneity. To make optimal use of the system
components, programmers must first learn about system
parameters and how to best leverage them for a given
application.
A promising approach to address these computing
challenges is via adaptive-approximate computer
architectures with decision making capabilities for
autonomous optimization and resource allocation based
on the application under execution.

[1] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple
interacting resources in chip multiprocessors: A machine learning approach,” in
Proceedings of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 41. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 318–329.

[2] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting cache line size
to application behavior,” in Proceedings of the 13th International Conference on
Supercomputing, ser. ICS ’99. New York, NY, USA: ACM, 1999, pp. 145–154.

[3] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ser. ISCA ’07. New York, NY, USA: ACM, 2007,
pp. 381–391.

[4] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High performance cache
replacement using re-reference interval prediction (rrip),” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 60–71, June 2010.

[5] D. A. Jim´enez and C. Lin, “Neural methods for dynamic branch prediction,” ACM
Trans. Comput. Syst., vol. 20, no. 4, pp. 369–397, Nov. 2002.

To achieve optimum energy efficiency, cache parameters
should be able to adapt themselves at run-time in
response to the changing requirements of the running
applications. These adaptations can be based on
monitoring the miss rates and setting up the appropriate
power envelopes.

A logic is built around the conventional cache structure to
enable dynamic reconfiguration
• Mask Register – An N-bit register to enable/disable a

particular way and set cache line size. Helps in power-
gating the cache blocks which are not in use.

• 3-input AND gates instead of 2-input AND gates for
detecting hits.

• 2-bits for link - Helps in improving the access time by
not matching the tags for same indexes.

In this work, as a step towards designing Self-Aware
Polymorphic Architecture (SAPA) systems, we investigate
self-organizing memory structures and adaptive memory
hierarchies, particularly in the caching subsystem.

The concept introduced and explored in this work,
Application-Aware Memory Organization Models (AMOM),
provides a generalized framework for designing smart and
reconfigurable memory subsystems.

The proposed design uses hardware counters and other
specialized hardware modules to learn the application’s
memory access pattern and estimate an optimal memory
configuration, both at runtime.

First, we study the effects of caching and cache
structures on application runtime behaviors. Second, we
explore the design space for cache structures that can
adapt at runtime to application needs by changing the
cache sizes, cache line widths and associativity.

•Simulators Used: Gem5, McPAT
•Benchmark: SPLASH-2
•ISA: Alpha & Simulation Mode: Full System

Parameter Value
Cache line size 64B

L1-I Cache size 32 KB

L1-D Cache size 64 KB

L2 Cache size 2 MB

Associativity 2-way
Increasing cache size decreases capacity misses and
increases access time and power.

Increasing associativity decreases conflict misses and
increases access time and power.

Increasing cache line size decreases compulsory misses
and increases miss penalty and power.

	Slide Number 1

