Rashmi Agrawal, Leo de Castro, Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, Ajay Joshi

Fully Homomorphic Encryption

- Enables computation over encrypted data.
- Supports any arithmetic circuit.

BOSTON

UNIVERSITY

Requires bootstrapping for unlimited computation.

Applications

Secure computation outsourcing

Problem: Bootstrapping is the major performance bottleneck

Does Fully Homomorphic Encryption Need Compute Acceleration?

Bootstrapping in Hardware

- Bootstrapping has low arithmetic intensity.
- Bottleneck is the memory bandwidth.

Our Contributions

Memory access optimizations: Optimize low-level memory organization for faster access for different orientations.

										Lir	nb	ind	de)	(Slot index																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(a) Baseline address mapping																														
Lov	ower-order bits Higher-order bits Higher-order bits Lower-order bits																														
fo	for limb index for slot index for limb index for slot index																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(b) Optimized address mapping																														
	_ v	vith	in a	i ro	w		In	ide	x		Ind	ex		gi gi	ani ou	p		Inde	ex			dex									

Algorithmic optimizations: Improve the arithmetic intensity of the low-level operations.

- Computation vs. memory trade-off.
- Improved homomorphic matrix-vector product.

Caching optimizations: Re-order the operations to maximize cache utilization.

• Custom tool to enumerate various optimizations and select parameters to optimize throughput.

- Silver lining: FPGAs can achieve near-ASIC performance at a fraction of the cost.
- Best near-term HE accelerator.