Does Fully Homomorphic Encryption Need Compute Acceleration?

Rashmi Agrawal, Leo de Castro, Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, Ajay Joshi

Fully Homomorphic Encryption
- Enables computation over encrypted data.
- Supports any arithmetic circuit.
- Requires bootstrapping for unlimited computation.

Applications
- Secure computation outsourcing

Secure AI Training: Logistic Regression

Problem: Bootstrapping is the major performance bottleneck

Results
- Significant improvements in bootstrapping throughput.

Future Perspectives
- Memory bandwidth is still the bottleneck.
 - Silver lining: FPGAs can achieve near-ASIC performance at a fraction of the cost.
 - Best near-term HE accelerator.

Algorithmic optimizations: Improve the arithmetic intensity of the low-level operations.
- Computation vs. memory trade-off.
- Improved homomorphic matrix-vector product.

Caching optimizations: Re-order the operations to maximize cache utilization.
- Custom tool to enumerate various optimizations and select parameters to optimize throughput.

Our Contributions
- Memory access optimizations: Optimize low-level memory organization for faster access for different orientations.

Algorithmic Optimizations: DRAM Reads → Switching Key Reads → DRAM Writes → Modular Multiplications → Modular Additions

Caching Customizations: DRAM Reads → Switching Key Reads → DRAM Writes → Modular Multiplications → Modular Additions

Problem: Bootstrapping has low arithmetic intensity.
- Bottleneck is the memory bandwidth.

Algorithmic Optimizations:
- DRAM Reads
- Switching Key Reads
- DRAM Writes
- Modular Multiplications
- Modular Additions

Caching Customizations:
- DRAM Reads
- Switching Key Reads
- DRAM Writes
- Modular Multiplications
- Modular Additions

Future Perspectives: Memory bandwidth is still the bottleneck.
- Silver lining: FPGAs can achieve near-ASIC performance at a fraction of the cost.
- Best near-term HE accelerator.